
Triform: peak finding in ChIP-Seq enrichment

profiles for transcription factors

Karl Kornacker∗and Tony H̊andstad†

June 5, 2012

A guide for using the Triform algorithm to predict transcription factor
binding sites from ChIP-Seq data

Contents

1 Licensing 2

2 Introduction 2

3 Overview of Triform 2

4 Parameters and configuration file 3

5 Preprocessing BED files 4

6 Running Triform 4

7 Session info 5

∗kornacker@midohio.twcbc.com
†tony.handstad@gmail.com

1

1 Licensing

This package is available under the GPL 2.0. license.

2 Introduction

Chromatin immunoprecipitation combined with high throughput sequenc-
ing (ChIP-Seq) is currently the method of choice for genome-wide map-
ping of binding sites for transcription factors on DNA. An essential step
in the analysis of ChIP-Seq data is the genome-wide identification of en-
riched regions. The Triform algorithm represents an improved approach for
automatic identification of peaks in ChIP-Seq enrichment profiles. Triform
uses robust genome-wide statistical tests to detect three different forms of
peak-like enrichment profiles, and takes advantage of multiple peak profile
characteristics. These characteristics include the shift property, which oc-
curs because the full sequence fragments, typically with an average length
around 200bp, are sequenced only 25-50bp from each side. Triform can also
use independent control samples, biological replicates, and is designed to
separate overlapping enrichment profiles.

3 Overview of Triform

Usage of Triform is split in two steps. In the preprocessing step, information
describing ChIP-seq tags in the form of BED-formatted files are converted to
a format that describes the tag counts along the chromosomes on the differ-
ent strands. The BED format is a tab-delimited format where each line de-
scribes the position of a mapped read (tag) in the form of space/chromosome,
start, end, name, score, strand. Triform will ignore the name and score
columns as they are not relevant here. Both control signal (i.e. ChIP-seq
reads for control experiments without a TF-specific antibody) and up to
several different TF signal files can be processed in the same run. After
the preprocessing step, triform itself can be run and will then output the
enriched regions.

Both the preprocessing step and the triform step consists of running
a single function. Both functions require certain parameters. It is easi-
est to use a configuration file to supply these parameters, but the parame-
ters can also be supplied directly to the preprocessing or triform function.
The configuration file must be in YAML format. See http://biostat.mc.

vanderbilt.edu/wiki/Main/YamlR for a description of YamlR and http:

2

http://biostat.mc.vanderbilt.edu/wiki/Main/YamlR
http://biostat.mc.vanderbilt.edu/wiki/Main/YamlR
http://cran.r-project.org/web/packages/yaml/index.html
http://cran.r-project.org/web/packages/yaml/index.html

//cran.r-project.org/web/packages/yaml/index.html for a description
of the yaml R package. An example configuration file is available under the
inst/docs directory in the triform package, and its contents is also shown
below.

4 Parameters and configuration file

A total number of 12 parameters must be set to run Triform. These are
most easily supplied using a configuration file in the YAML-format. Each
line contains the parameter name and value separated by a colon. Some
parameters can take multiple values, these values are then given one per
line with a dash before the value. Below is an example of a configuration
file. The text after the hashes are comments, explaining the purpose of the
parameter.

READ.PATH : ./tmp ## Path to source files (reads in BED format)

COVER.PATH : ./chrcovers ## Path for chromosome coverage files

OUTPUT.PATH : ./tmp/Triform_output.csv ## Path for output file (including filename)

TARGETS :

Filenames for TF experiments

Must include replicate name (_rep1 or _rep2), and .bed file ending

- srf_huds_Gm12878_rep1.bed

- srf_huds_Gm12878_rep2.bed

CONTROLS :

Filenames for control/background experiments

Must include replicate name (_rep1 or _rep2), and .bed file ending

- backgr_huds_Gm12878_rep1.bed

- backgr_huds_Gm12878_rep2.bed

READ.WIDTH : 100 ## Read width (used when preprocessing data) (w)

FLANK.DELTA : 150 ## Fixed spacing between central and flanking locations

MAX.P : 0.1 ## Minimum p-value, used to calculate min.z

MIN.WIDTH : 10 ## Minimum peak width (min.n)

MIN.QUANT : 0.375 ## Minimum quantile of enrichment ratios.

MIN.SHIFT : 10 ## Minimum inter-strand lag between peak coverage distributions

CHRS : ## Chromosomes to be used in Triform peak detection

3

http://cran.r-project.org/web/packages/yaml/index.html
http://cran.r-project.org/web/packages/yaml/index.html

- chrY

5 Preprocessing BED files

Start by loading the triform package.

> library(triform)

This will make the functions “preprocess” and “triform” available. Here,
we will use sample data available in the vignette directory for the package.
The configuration file is also available in the vignette directory, so this is
given to the preprocess function.

> preprocess("./config.yml")

Each replicate of each TF or control signal should be in its own BED
file. The preprocessing will first convert all files with the .bed-extension in
the READ.PATH directory to IRanges RangedData objects and save them
as RData files. Thereafter, the preprocessing will use the READ.WIDTH
parameter to divide each chromosome into segments and calculate for each
signal and strand, the number of reads in each segment. The preprocessing
ends by saving one file for each chromosome in the dataset, combining all
signals and replicate information for the given chromosome in one file.

6 Running Triform

After preprocessing, Triform can be run similarly, by supplying the path to
the configuration file to the triform function:

> triform("./config.yml")

Triform will then process each chromosome and output each predicted
peak region to a file whose path was given in the OUTPUT.PATH parame-
ter.

Note that it is also possible to run preprocessing and Triform by sup-
plying the parameters directly instead of using a configuration file. In that
case, populate a named list with the parameters and consider setting the
configPath parameter to NULL. Parameters supplied in the params list will
overwrite the values set by any parameters in the configuration file.

4

preprocess(configPath=NULL, params=list(READ.PATH="./inst/extdata",

COVER.PATH="./inst/extdata", READ.WIDTH=100))

triform(configPath=NULL, params=list(COVER.PATH = "./inst/extdata",

OUTPUT.PATH = "./inst/extdata/Triform_output.csv",

MAX.P = 0.1, MIN.WIDTH = 10, MIN.QUANT = 0.375, MIN.SHIFT = 10,

FLANK.DELTA = 150, CHRS = c("chrY"), CONTROLS =

c("backgr_huds_Gm12878_rep1.bed", "backgr_huds_Gm12878_rep2.bed"),

TARGETS=c("srf_huds_Gm12878_rep1.bed", "srf_huds_Gm12878_rep2.bed")))

7 Session info

> sessionInfo()

R version 2.14.1 (2011-12-22)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] triform_1.0 yaml_2.1.4 IRanges_1.12.6

loaded via a namespace (and not attached):

[1] tools_2.14.1

5

	Licensing
	Introduction
	Overview of Triform
	Parameters and configuration file
	Preprocessing BED files
	Running Triform
	Session info

