Bioinformatic characterization of the normal thyroid reference epigenome <u>Celia Siu</u>^{1,2}, Sitanshu Gakkhar¹, Alireza Heravi-Moussavi¹, Misha Bilenky¹, Annaick Carles³, Thomas Sierocinski³, Angela Tam¹, Eric Zhao¹, Katayoon Kasaian¹, Richard Moore¹, Andy Mungall¹, Blair Walker⁴, Thomas Thomson⁵, Sam Wiseman⁶, Marco Marra^{1,7}, Martin Hirst^{1,7}, Steven Jones^{1,7,8} ¹Michael Smith Genome Sciences Centre, BC Cancer Agency. ²Department of Sciences, University of British Columbia. ³Department of Microbiology & Immunology, University of British Columbia. ⁴Department of Pathology and Laboratory Medicine, St. Paul's Hospital & University of British Columbia. ⁵Department of Pathology and Laboratory Medicine, BC Cancer Agency & University of British Columbia. ⁶Department of Surgery, St. Paul's Hospital & University of British Columbia. ⁷Department of Medical Genetics, University of British Columbia. ⁸Department of Molecular Biology & Biochemistry, Simon Fraser University. ## **ABSTRACT** The thyroid, necessary for normal growth and development, is essential for the regulation of metabolism in every cell of the human body. Its function -- to produce and secrete appropriate levels of thyroid hormone -- is simple; however, the incidence of thyroid abnormalities is increasing and accurate assessment of abnormal thyroids for different individuals is challenging. A fundamental understanding of the normal thyroid is therefore needed. One way to characterize the normal thyroid is to study its epigenome and matched transcriptome. In this study we are analyzing grossly uninvolved tumour-adjacent thyroids from four human individuals using ChIP-seq, RNA-seq, and bisulfite-seq. We examine 4 activating (H3K4me1, H3K4me3, H3K27ac, H3K36me3) and 2 repressing (H3K9me3, H3K27me3) histone post-translational modifications, identify chromatin states using a hidden Markov model, establish maps of regulatory elements, and compare DNA methylation and RNA expression profiles between samples. The goals of this study are (1) to understand and characterize regions of regulation which are consistent and regions of regulation which are variable between the thyroids of different individuals and (2) to produce an available reference thyroid epigenome as a resource and reference of human epigenomic data for comparison and integration of future studies.