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ABSTRACT
Motivation: Deciphering the regulatory sequences which control
gene transcription is a critical step in understanding both
cellular and condition-specific regulatory programs encoded in the
human genome. Transcriptional response is typically regulated by
transcription factors (TFs) which are known to bind specific regulatory
sequence motifs. Profiling the binding activity of these factors can
be quickly accomplished at a genome-wide scale with the recently
developed technique ATAC-seq, which utilizes the Tn5 transposase to
fragment and tag accessible DNA. When coupled with an advanced
computational method such as CENTIPEDE, ATAC-seq data can be
used to generate binding models for TFs with known motifs across the
genome. To date, there are no methods that efficiently incorporate the
information provided by paired-end sequencing, which allows both the
identification of the library fragment length as well as the two cleavage
locations that generated the fragment.
Results: We have extended CENTIPEDE to utilize fragment length
information in a simple yet efficient way. Our results indicate
that paired-end sequencing provides a more informative footprint
model for ATAC-seq libraries, which leads to greater accuracy in
predicting TF binding. These results were validated with ChIP-seq
data (ENCODE Project) for multiple factors including CTCF, NRSF,
NRF-1, and NFkB.
Availability: http://github.com/piquelab/CENTIPEDE (under
development)
Contact: fluca@wayne.edu;rpique@wayne.edu

Recent technological advances in molecular biology combined with
high-throughput sequencing have made possible the analysis of
many different types of regulatory function across the entire genome
and across a large number of cell-types. At the molecular level
the regulatory function is usually accomplished by transcription
factor (TF) proteins that recognize specific DNA sequence motifs.
Functional genomics data collected by ENCODE (The ENCODE
Project Consortium, 2012), Roadmap Epigenomics (Roadmap
Epigenomics Consortium, 2015), and other groups (e.g., Visel et al.
2009) have provided a great deal of information about regulatory
regions, however we are still far away of obtaining complete maps
of active regulatory regions for many TFs and cellular conditions.

Although the association of transcription factors to DNA can
be empirically determined through assays such as Chromatin
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ImmunoPrecipitation-Sequencing(ChIP-Seq), ChIP-Seq has been
performed for only a subset of all DNA-associated proteins and
only in selected cell types. However, alternative experimental
procedures have been devised to indirectly recover actively used
binding sites for a wide panel of TF by measuring chromatin
accessibility, chromatin modifications, P300 ChIP-seq, enhancer
RNAs and others. Many of these experimental data types are not
TF specific, thus circumventing the need for TF-specific antibodies.
Several computational methods have been developed that can
exploit the correlation structure of these types of data to identify
tissue-specific regulatory regions. For example, different types of
histone modifications have been integrated using hidden Markov
models (HMMs) (Ernst and Kellis, 2010), and dynamic Bayesian
networks (DBNs) (Hoffman et al., 2013). Chromatin accessibility
measured by DNase-seq and sequence motifs have been integrated
in different types of mixture models (CENTIPEDE (Pique-Regi
et al., 2011), PIQ (Sherwood et al., 2014) and others (Boyle et al.,
2012; Neph et al., 2012)). The advantage of DNase-seq over other
indirect methods is that the DNase I cleavage pattern at single
base-pair resolution around the binding site (i.e., the footprint) is
very informative. A systematic comparison of DNase-seq derived
CENTIPEDE predictions and ChIP-seq data from ENCODE on
LCLs and K562 cells demonstrated a remarkable agreement in
classifying motif instances as bound or unbound, and CENTIPEDE
was used to create one of the most extensive map of transcription
factor (TF) binding in LCLs.

Here we focus on adapting and applying the CENTIPEDE
method to ATAC-seq data. ATAC-seq is a new experimental
protocol (Buenrostro et al., 2013) that similarly to DNase-seq seeks
to map chromatin accessible regions of the genome. The basic
difference between ATAC-seq and DNase-seq is the use of the
synthetic Tn5 transposase enzyme instead of DNase I to cleave
the DNA at accessible chromatin locations. A major advantage
of ATAC-seq is that Tn5 can be pre-loaded with the sequencing
primers as in the case of the Nextera DNA library preparation
kit (Illumina), which greatly simplifies and accelerates library
preparation. Similar to DNase-seq, the small sequence region
actively bound by a TF is less accessible to Tn5, thus factor-
specific footprint can be detected. Tn5 is less efficient in cleaving
linker DNA between tightly compacted nucleosomes, but can
more easily cleave between less compacted nucleosomes such as
those surrounding enhancer/promoter regions. CENTIPEDE was
originally designed to model at base-pair resolution the DNase I
cleavage sensitivity spatial profile (i.e., footprint) characteristic of
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active TF-DNA binding and ignores paired-end information. Here
we modify the CENTIPEDE model to analyze ATAC-seq data and
exploit the paired-end information.

Experimental data. The lymphoblastoid cell line (LCL) GM18508
was purchased from Coriell Cell Repository. LCLs were cultured
and starved according to (Maranville et al., 2011). We then followed
the protocol by (Buenrostro et al., 2013) to lyse the cells and
prepare ATAC-seq libraries, with the exception that we used the
Illumina Nextera Index Kit (Cat#15055290) in the PCR enrichment
step. Individual libraries fragment distribution was assessed on the
Agilent Bioanalyzer and pooling proportions were determined using
the qPCR Kapa library quantification kits (KAPA Biosystems).
Library pools were run on the Illumina NextSeq 500 Desktop
sequencer in the Luca/Pique-Regi lab and on the Illumina HiSeq
2500 at the Michigan State University Genomics Core. Libraries
from three replicates were pooled and sequenced on multiple
sequencing runs for a total of 753M 50bp PE reads. Additional
DNase-seq data and ChIP-seq data was retrieved from the ENCODE
project for evaluation purposes.

Pre-processing. Reads were aligned to the reference human genome
hg19 using bwa mem (Li and Durbin, 2009 http://bio-bwa.
sourceforge.net). Reads with quality <10 and without proper
pairs were removed using samtools (http://github.
com/samtools/) while putative duplicated reads were kept as
is. Reads with different fragment length were partitioned into four
bins: 1) [39-99], 2) [100-139], 3) [140-179], 4) [180-250]. For each
fragment the two Tn5 insertion sites were calculated as the position
4bp after the 5’-end in the 5’ to 3’ direction. Then for each candidate
motif a matrix X was constructed to count Tn5 insertion events:
each row represents a sequence match to motif in the genome (motif
instance), and each column a specific cleavage site at a relative bp
and orientation with respect to the motif instance. We built a matrix
{Xl}4l=1 for each fragment length bin, each using a window half-
size S=150bp resulting in (2 × S + W ) × 2 columns, where W is
the length of the motif in bp. The motif instances were scanned in
the the human genome hg19 using position weight (PWM) models
from TRANSFAC and JASPAR as previously described (Pique-Regi
et al., 2011).

Results. We used CENTIPEDE with four modeling alternatives.
Each alternative model we tested corresponds to a different
parametrization of the Negative-Multinomial distribution modeling
the total number of reads in each row of X as well as the spatial
distribution across columns. Namely, these different alternatives
are:

• ATAC-seq reads from different fragment lengths are separated
and modeled as independent Negative-Multinomial (NM)
components {Xl}4l=1.

• ATAC-seq reads from different fragment lengths are all added
together (one NM component, fragment length information is
ignored) X = X1 +X2 +X3 +X4

• ATAC-seq reads from different fragment lengths are concatenated
together (one NM component) X = [X1,X2,X3,X4]

• ATAC-seq reads from only short fragments used (one NM
component) X = X1

We ran the CENTIPEDE model for a selection of TFs with DNase-
seq and ChIP-seq data available from the ENCODE project. The
CENTIPEDE results on TF binding were then compared using an
ROC curve (Figure 1) and the area under the curve (AUC) for each
model is summarized in Table 1.

Area under the curve (AUC) values
ATAC-seq, Fragments with different

fragment lengths are modeled:
ChIP-
seq

DNase-
seq

Separated Added Concate-
nated

Short
Only

CTCF 0.93 0.94 0.94 0.95 0.93
NRSF 0.79 0.78 0.75 0.71 0.74
NRF-1 0.88 0.8 0.77 0.94 0.74
NFkB 0.96 0.76 0.72 0.9 0.72
NFYA 0.97 0.89 0.86 0.95 0.83
SP-1 0.97 0.77 0.67 0.93 0.75
USF-1 0.92 0.64 0.52 0.91 0.62
EGR-1 0.93 0.62 0.6 0.87 0.59

Table 1. AUC values for ROC analysis of ATAC-seq and DNase-
seq performance. Several CENTIPEDE models were tested to optimize
performance on ATAC-seq data (in bold we indicate the best model for each
TF).

Fig. 1. ROC analysis of ATAC-seq and DNase-seq performance with
CENTIPEDE. Receiver operating characteristic curve of ATAC-seq and
DNase-seq performance for ENCODE ChIP-seq sites (left, CTCF; right,
NRF-1). Four different CENTIPEDE models were tested to optimize
performance on ATAC-seq data.

For many TFs, ATAC-seq performs similarly to DNase-seq but
may require higher sequencing depth. Additional data across many
cell-types and conditions may be necessary to further confirm
this result. ATAC-seq has several advantages over DNase-seq: the
experimental assay protocol is simpler and much faster, it uses
a very small number of cells (50,000) and is therefore easier to
perform and replicate on several cell types (including primary cells).
Our implementation shows that CENTIPEDE with appropriate
modifications can take advantage of the paired-end information
provided by the ATAC-seq data and improve binding site detection
as determined by comparison to ChIP-seq data, thus yielding a
resolution similar to DNase-seq with a streamlined experimental
workflow.
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