Genomic variants dysregulate cancer genes by modulating microRNA activity
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Modulators of miRNA activity™ include competing endogenous RNA (ceRNA) species that can regulate the
abundance of other RNAs in trans by competing for common miRNAs. Up- or down-regulation of ceRNAs
alters the expression of their cognate targets (Fig.1A), and alterations in copy number and methylation at
ceRNA loci are integrated and propagated in trans by ceRNA, resulting in pathophysiologically relevant
dysregulation of tumor suppressor and oncogene expression.

Our analyses suggest that the expression of hundreds of tumors suppressors and oncogenes are altered by
genomic variants at the loci of their ceRNA regulators in each of eight cancer types. Our analyses also suggest

that ceRNA interactions are near
independent  of individual mIiRNA
abundance, resulting in a near context-
independent pan-cancer ceRNA
interaction network (henceforth PCI). We
validated the PCI (Figl.B) using data from
LINCS, and other biochemical assays (not
shown), and showed that key cancer
genes are mechanistically dysregulated by
concerted genomic alterations at their
cognate ceRNA-interacting genes in
samples where their genomic loci are
intact (Figl C-D). Conclusions from our
analysis were confirmed using molecular
profiles of 14,240 tumors from 129
additional cohorts (Figl. E). Focusing on
specific tumor suppressors and
oncogenes, we've shown that tumor
suppressors, including PTEN, RB1, and
P53 are able to regulate each other on the
RNA level; that the same is true for
oncogenes, including HIF1A, CCND1 and
HMGAZ2; that Genomic alterations at APC
(not shown) and ESR1 ceRNA regulators
were predictive of their dysregulation in
colon and breast cancer tumors,>®
respectively, and that perturbations that
target these ceRNA regulators alter target
expression and mimic corresponding cell
and tumor phenotypes (Figl.F-J).

We've shown that ceRNA is not only
predictive of missing genomic variability of
hundreds of oncogenes and tumor
suppressors in each tumor type tested, but
can also help predict microRNA targets™®
as the main part of a panel providing
functional evidence for miRNA regulation
in primary tumors (Fig. 2).
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Figl. A) RNAs regulate one another by titrating miRNA regulators. Up/down
regulation of RNA 1 sequesters shared miRNAs, leading to weaker/stronger
repression of RNA 2. B) ceRNA is predictive of mRNA expression changes following
shRNA perturbations in LINCS. C) Dysregulation of cancer genes with no in-cis
alterations in tumors (red) was predicted by ceRNA-regulator expression and (D)
copy number or methylation status. E) The proportion of cancer-gene ceRNA targets
whose expression profiles are significantly (p<0.05; red) predicted by ceRNA in each
of 129 independent cohorts. F) ESR1 expression is dysregulated both when its locus is
abnormal (with variability) and intact (missing genomic variability). G) Average
ceRNA-regulator expression, CNV and methylation were predictive of ESR1
expression in tumors where its locus is intact. H) Silencing ESR1 ceRNA that are co-
altered in these tumors down regulated ESR1 expression and (1) altered MCF7 cell
growth and (J) tumor formation in mouse xenografts.



Altogether, our results suggest that
the ceRNA regulation and PCI in
particular, are key resources for
cancer genomic studies and that its
further study may elucidate critical
pathophysiological mechanisms.
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Fig2. A) Cupid first reevaluates sites predicted by TargetScan,7 miRanda8 and PITA,9 selecting
and rescoring each candidate site (Step 1). Sites are used to select and score miRNA-target
interactions (Step Il), which are then examined for evidence for mediating ceRNA interactions
(Step IlI). In addition, to support interaction prediction, we consider (B) evidence for
combinatorial regulation between miRNAs and (C) evidence for indirect regulation by miRNAs
through effectors. (D) Cupid predictions had a lower false discovery rate when evaluated using
miRNA mimic transfection followed by protein expression profiling. (E) P-values and average
protein-expression fold changes after transfection of Cupid-predicted miRNA regulators. In
total, considering expression estimates made with 117 antibodies, 34 reported significant down
regulation (p<0.05, in red), 51 reported down regulation (orange), 30 reported up regulation
(blue), and 2 reported significant up regulation (p<0.05, in green); a comprehensive significance
of p<4E-10. (F) Predicted miRNA-target interactions and a summary of biochemical validation,
depicting true positive, true negative, false positive and false negative predictions; down
regulation of 3’ UTR luciferase activity in response to miRNA-mimic transfection at p<0.05 was
taken as evidence for regulation.



