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1. Introduction

Association mapping of cellular traits is a powerful ap-
proach for understanding the function of genetic varia-
tion. Cellular traits that can be quantified by next genera-
tion sequencing (NGS) are particularly useful for associa-
tion analysis because they provide highly quantitative in-
formation about the phenotype of interest and can easily
be scaled genome-wide. Population scale studies using
NGS-based cell phenotypes such as RNA-seq, ChIP-seq
and DNaseI-seq have revealed an abundance QTLs for
gene expression and isoform abundance [1–4], chromatin
accessibility [5], histone modification, transcription factor
binding (TF) [6–9] and DNA methylation [10], providing
precise molecular information on the functions of human
genetic variation at high resolution. However the effect
sizes of many common variants are modest meaning that
association analysis typically requires large sample sizes,
which can be problematic when assays are labour inten-
sive or cellular material is difficult to obtain. Further-
more, even well-powered studies can struggle to accu-
rately fine-map causal variants.

Here we describe a novel statistical method,
RASQUAL (Robust Allele Specific Quantitation and
quality controL), that integrates population level
changes, AS signals and technical biases on NGS-based
cell phenotypes into a single, probabilistic framework for
association mapping. RASQUAL can be applied to exist-
ing NGS data sets without requiring data filtering, mask-
ing or the creation of personalised reference genomes.
When applied to RNA-seq, ChIP-seq and DNaseI-seq
data sets, RASQUAL significantly outperformed existing
methods, both in its ability to detect QTLs and to fine-
map putatively causal variants. We used RASQUAL to
generate the first map of chromatin accessibility QTLs
in a European population using ATAC-seq [12]). De-
spite a modest sample size of 24 individuals, RASQUAL
detected over 2700 independent chromatin accessibility
QTLs (FDR 10%) providing a rich resource for the func-
tional interpretation of human noncoding variation.

2. Statistical model

RASQUAL models each sequenced feature, such as ChIP-
seq peak or the union of exons over an entire tran-
script, and considers all genotyped variants within a
given distance of the feature (the cis-window). For sim-
plicity, RASQUAL assumes a single cis-regulatory vari-
ant (rSNP) at each feature. Let Yi be the total fragment
count at the feature and (YR

il , YA
il ) be the AS fragment

counts at each feature variant l, where R for reference

and A for alternative alleles respectively, for individual
i (i = 1, . . . , N). The model contains two components:
(i) population signals are captured by regressing the to-
tal fragment count Yi onto the number of alternative alle-
les Gi (Gi = 0, 1, 2) at rSNP, assuming read counts fol-
low a negative binomial distribution (pNB) and (ii) AS
signals are modelled assuming the alternative fragment
count, YA

il , at a fSNP l given the total reads overlapping
that fSNP, Yil , follows a beta binomial distribution (pBB).
The model components are connected by a single cis-
regulatory effect parameter π such that the expected total
count is proportional to {2(1− π), 1, 2π} for Gi = 0, 1, 2
and the expected allelic ratio in an individual heterozy-
gous for the putative causal SNP becomes {π, 1− π}.

Although the parametrization of this type has been
previously proposed [6, 11], RASQUAL improves over
the methods via (i) robust estimation of read count
overdispersion for between individual feature counts
and within individual AS counts, (ii) substantial refine-
ment of genome imputation by modeling uncertainty in
genotype and haplotype configurations between rSNP
and each fSNP and (iii) explicit modelling of a broad
range of technical biases in AS data by using information
from all individuals. A key novelty of our approach is the
use of read counts at both heterozygous and homozygous
fSNPs to significantly improve genotype error correction
and the estimation of bias parameters. The likelihood is
then given by

L(π, δ, φ, λ, θ)

∝
N

∏
i=1

sample

∑
Gi

p(Gi)pNB(Yi|Gi; π, λ, θ)︸ ︷︷ ︸
population signal

×
L

∏
l=1

fSNP

∑
Dil

p(Dil |Gi)pBB(YA
il |Yil , Dil ; π, δ, φ, θ)︸ ︷︷ ︸

AS signal

,

where Dil denotes the diplotype configuration in indi-
vidual i between the putatively causal variant and the
fSNP l, p(Gi) and p(Dil |Gi) denote prior probabilities
of genotype and diplotype configuration (obtained from
SNP phasing and imputation). In addition to the cis-
regulatory effect (π), total read count depends on λ, a
scaling parameter for absolute mean of the negative bi-
nomial distribution. The allelic ratio depends upon δ,
the probability that an individual read maps to an incor-
rect location in genome and φ, the reference mapping bias
(where φ=0.5 corresponds to no reference bias). Overdis-
persion in both Yi and YA

il is captured by a single shared
parameter θ.

Parameter estimation and genotypes are iteratively
updated during model fitting by an expectation-
maximisation (EM) algorithm [13] to arrive at the final
QTL call for each sequenced feature. For statistical hy-
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pothesis testing of QTL, all five parameters for each SNP-
feature combination in the cis-regulatory window are es-
timated independently to get the maximum likelihood
under alternative hypotheses. Under the null hypothe-
sis, all parameters except π are estimated for each feature
independently, while π is set to 0.5 and we use a like-
lihood ratio test to compare the null and alternative hy-
potheses for each SNP-feature combination using the χ2

distribution with one degree of freedom (for π). We do
not introduce any common parameters across individu-
als or features estimated a priori, but instead introduced
prior distributions for all the parameters to increase the
stability and usability of RASQUAL.

3. Mapping chromatin accessibility QTLs with
RASQUAL and ATAC-seq

We next applied RASQUAL to address a specific bio-
logical problem: mapping chromatin accessibility QTLs
(caQTLs) in a small sample. We generated genome-
wide chromatin accessibility landscapes in 24 LCLs from

the 1000 Genomes GBR population using ATAC-seq [12]
(see Online Methods and Supplementary Methods for
details). Despite the modest sample size RASQUAL
detected 2,706 caQTLs at FDR=10% using a permuta-
tion test (see Online Methods). Lead SNPs detected by
RASQUAL were very highly enriched within the ATAC
peak itself (842 peaks; OR=47, P < 10−16) (Figurea),
with a smaller number in perfect LD with one or more
SNPs within the peak (130 in perfect LD with a single
fSNP, and 35 with 2 fSNPs). In the set of 1007 lead SNPs
within a peak or in perfect LD with an fSNP, the major-
ity (692) overlapped a known transcription factor bind-
ing motif that was disrupted by one of the SNP alleles
(Figure b). An example caQTL where a putatively causal
variant (r2886870) is located within both the ATAC peak
and an NFκB1 motif is shown in Figure c. This SNP is pre-
dicted to produce a large (85%) change in binding affin-
ity, with the predicted change in binding corresponding
with a change both in ATAC-seq peak height and in AI at
flanking heterozygous fSNPs in individuals that are het-
erozygous at r2886870.
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Fig. ATAC-QTL mapping with RASQUAL. (a) Location of ATAC-QTL lead SNP, relative to peak boundaries, averaged across all
1,798 FDR 10% significant associations detected; inset shows proportion of lead SNPs located inside, outside and in perfect LD
(r2 > 0.99) with a SNP inside the ATAC peak. (b) Proportion of lead SNPs, located inside the ATAC peak that overlapped an
identifiable transcription factor binding motif. (c) An example of an NFκB1 motif-disrupting QTL (d) Example of a ”multi-peak”
ATAC-QTL (rs3763469) that perturbs a putative enhancer-promoter interaction in the COL1A2, also driving variation in gene
expression. (e) Example of a ”multi-peak” QTL: the same genetic variant illustrated in panel c (rs2886870), drives associations at
6 peaks in the intron and promoter the MB21D2 gene.
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Further analysis of our detected caQTLs revealed 154
“multipeak” QTLs, where a SNP was associated with
variation in chromatin accessibility across multiple inde-
pendent peak regions. In some cases, these long-range
associations appeared to result from enhancer-promoter
interactions that are perturbed by a genetic variant. For
example, rs3763469 is the lead caQTL SNP for a region
of open chromatin located approximately 2.5kb upstream
of the promoter of the COL1A2 gene (Figure d) with the
alternative allele predicted to increase binding affinity
of the transcription factor IRF1. However, we observed
that this SNP is also a QTL for the adjacent ATAC peak
located over the promoter region of COL1A2 gene, for
which no other common SNPs were annotated in the 1000
Genomes database. In other striking examples, we ob-
served genetic associations spanning a large number of
additional peaks spread over many tens of kilobases (Fig-
ure d). For example the lead caQTL SNP in Figure c also
appeared as the lead SNP or SNP in perfect LD with the
lead SNP at 5 other peaks in the intron and promoter re-
gions of MB21D2 gene.

4. Discussion

We have developed a novel statistical model, RASQUAL,
for mapping associations between genotype and NGS-
based cellular phenotypes. A major difference between
RASQUAL and the other methods we have tested is that
RASQUAL handles bias and detection of genetic signals
in a single statistical framework, using information from
all individuals in the data set and without removing data.
In contrast, other methods treat bias in NGS data as a data
quality control (QC) issue and either ignore it or rely on
a series of read realignment and data filtering steps to
remove problematic regions a priori. Better handling of
a range of biases in NGS data is likely to explain much
of the differences in performance we observed. Further-
more, data filtering and QC steps as an alternative to han-
dling bias may introduce a number of other issues. First,
data QC involving read filtering may also inadvertently
remove substantial signal from the data. A second is-
sue is that it is often difficult to set sensible thresholds
for data QC. In addition to boosting model sensitivity
and specificity, we believe that minimising the amount of
data pre-processing significantly improves the usability
of RASQUAL. Users of RASQUAL are not required set
arbitrary thresholds for data QC, nor are they required
to perform disk and CPU-intensive read remapping or
simulations to account for biases NGS data, but can in-
stead run the model on existing data as is. In addition,
RASQUAL output contains an informative set of param-
eters that can highlight genomic regions with problem-
atic AS signals enabling more informed downstream in-
terpretation of analysis results.

We also generated a novel ATAC-seq data set in
LCLs from European individuals and illustrated how
RASQUAL can be used to extract meaningful genetic
signals from data sets of a modest size. Our analysis
of ATAC-seq data demonstrates how genetic variation

can be leveraged to connect distal regulatory elements
with gene promoters or with other regulatory elements.
A strength of this approach, compared with experimen-
tal techniques such as Hi-C or CHiAPET, is that these
interactions are linked to specific genetic changes en-
abling characterisation of causal relationships between
regulatory elements and their target genes. We expect
that genetic analysis of long-range regulatory interac-
tions will be a powerful complement to standard experi-
mental techniques in future studies.

A potential limitation of RASQUAL is its reliance on
high quality genotype imputation and phasing to com-
pute genotype and diplotype likelihoods. Poor qual-
ity imputation or phasing information is likely to affect
the RASQUAL’s ability to detect QTLs, particularly in
cases where the distance between the true rSNP and fSNP
is large, due to the increased probability of haplotype
switching errors. However our analysis illustrates that
these problems can be readily overcome using imputa-
tion into the large, high quality panels now available
from the 1000 Genomes and UK10K projects.

Finally, we believe that our results also highlight how
RASQUAL’s performance with modest sample sizes will
enable researchers to collect and analyse multiple com-
plementary NGS data sets, rather than focusing resources
on maximising sample sizes for an individual phenotype.
Combined with RASQUAL’s improved ability to localise
causal variants we suggest that a major future applica-
tion of our model will be the fine-mapping of causal regu-
latory variants to understand the molecular mechanisms
underlying phenotypic variation.
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