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Introduction 

Genes are regulated by transcription factors (TF) binding to physiological target sites in the genome. 

Understanding the mechanisms by which TFs are recruited to their target sites is essential for the 

understanding of gene regulation. The recently introduced ChIP-Seq technology allows for genome-

wide mapping of all in vivo bound sites of a given TFs in a particular cell type at near base-pair 

resolution [1]. What has become clear from ChIP-Seq experiments is that the intrinsic binding 

specificity of a TF can only partly explain the in vivo site occupancy patterns, which were found to be 

remarkably tissue-specific.  

 

Several recent studies have reported that TF binding is influenced and can be chromatin contextual 

features such as DNA chromatin accessibility, nucleosome occupancy, or the presence of specific 

histone post-translational modifications [2,3]. Site occupancy may also be partly predictable from 

sequence intrinsic properties such as oligo-nucleotide composition, DNA structural parameters and 

evolutionary conservation. In this work, we use machine learning to assess the relative importance of 

such features in TF to target site recruitment process, in the hope to gain insights into transcription 

regulatory mechanisms. As test example, we use the sequence-specific DNA-binding protein CTCF 

which has been assayed by ChIP-Seq in many cell types. CTCF has been attributed diverse roles in 

gene regulation, including insulator activity, gene activation and repression, genomic imprinting and 

tumor suppressor [4].  

 

Study design, data and methods  

Our study primarily relies on recent data published by the ENCODE consortium [5]. The general idea 

is to use machine learning algorithms to build models that predict site occupancy at predefined target 

sites. We used two types of candidate target site list: (a) Predicted sites from a whole genome scan with 

a position weight matrix (PWM) and (b) 10 cell type-specific peak lists published by ENCODE. For 

both types of candidate sites we expressed cell-type specific CTCF occupancy as the number of ChIP-

Seq tags within a window of 200 bp around the site. In parallel, we collected for each site in each lists a 

number of associated predicted and experimental features (Table 1). We then applied machine learning 

algorithms to predict site occupancy from different subsets of associated features. Note that 

experimental features such as histone modifications or DNase I hypersensitivity were evaluated in two 

different ways: (a) by the total number of tag counts in a window around the site and (b) by computing 

a “shape-score” reflecting the similarity of the tag distribution around a particular site with the average 

tag distribution as seen in an aggregate plot. We applied machine learning in a binary class-prediction 

framework and by regression analysis. For class prediction the candidate site lists were first split into 

high and low occupancy classes. Support vector machines (SVM) combined with recursive feature 

selection performed better than random forests (RF) was used for class prediction, support vector 

regression (SVR) was used for model training with quantitative site occupancy data. The performance 

was evaluated by 10-fold cross-validation, except in the cases where data from one cell type were used 

to predict the results from another cell type. Performance was expressed as a Pearson correlation 

coefficient between predicted and experimentally determined site occupancy (Fig. 1A).    

 



Summary of results and selected examples 
Rad21, TFBS-score and DGF are the most important features that contributed significantly to the 

classification followed by histone marks. It was known before that CTCF associates with Rad21 in the 

so-called CTCF/cohesion complex. The very good performance of Rad21 confirms the previous reports 

that CTCF acts in close coordination with this protein. Other sequence and structural features showed 

relatively low importance and didn't contribute significantly to the classification accuracy when 

considering TBFS-score alone, however, they performed better in predicted CTCF sites than ENCODE 

peak list. In order to get an objective comparison between the two datasets we used top two features 

(showing maximum contribution) to build model on one cell line and prediction on other cell lines. In 

addition, five histone marks were also used for classification in five cell lines (limited due to dataset 

availability), where H3K4me1 a distal mark showed highest importance in classification. The two 

cancerous cell lines in the dataset K562 and HepG2 showed similar patterns among themselves but a 

distinct pattern when compared to other normal cell lines indicating that they has varied cell specific 

CTCF sites.  

 

 
Figure1: A) SVR model was built on training dataset from K562 and used to predict CTCF tags on test dataset from K562 

cell line. Graph shows the Pearson's correlation for measured and predicted CTCF sites on test dataset. B) Feature 

importance for regression on CTCF sites from ENCODE peak list for K562 cell line. C) SVR model was built on K562 and 

H1-hESC cell line for both dataset (ENCODE peak list and predicted CTCF sites), these models were then used to predict 

the CTCF tags on other cell line (Pearson's correlation coefficient shows the performance of model on cross-cell line 

prediction). 

Table 1: Overview of features used to predict CTCF site occupancy 

Feature type Feature description Number Data source/ Reference 

Sequence intrinsic Mono-penta nucleotide frequency 1364  

Nucleosome occupancy 1 [6] 

Structural parameters 10 [7] 

CTCF TFBS-score 1 JASPAR [8] 

Evolution/Polymorphism Avg PhastCons score 1 UCSC database 

SNP Frequency 1 dbSNP132 

Tissue-specific 

experimental features 

(tag counts in window 

around site and shape 

based evaluation) 

Distance to nearest TSS 1 ENSEMBL database 

DNase I  1 GEO series (GSE26328) 

Histone modifications 8 GEO series (GSE29611) 

PolII 1 GEO series (GSE32465) 

RAD21 1 GEO series (GSE32465) 

                

To investigate the degree of tissue specificity we built models using TFBS-score, DGF, Rad21, average 

nucleosome occupancy/ base, average distance from TSS site and certain histone marks performed best 

in the prediction (Figure 1B). The results showed in general high correlation coefficient within and 



across cell lines with certain notable exception (Figure 1C). Models built from fibroblast cell lines were 

good predictor of other fibroblast cell lines compared to other cell lines. The other cell line which 

showed consistently varied performance in cross-prediction experiment is K562, the cancer cell line 

considered in this study. We also note that tissue-specificity of trained models are better predictor of 

PWM predicted sites lists than experimental peak lists. This is not really surprising as the experimental 

peak list exclude those sites which totally unoccupied in given tissue.   
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