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Motivation

Tumor cells display many functions possessed by their normal counterparts. Their ability to migrate, to prolifer-
ate, to attract new vessels and to exist in various differentiation states are properties also found in normal tissue
during wound healing. Following tissue injury normal cells can operate these processes in a tightly regulated
and coordinated manner leading to the healing of the wound.

We propose an original systems biology approach to identify and analyse the regulatory networks found in
the normal states to then assess whether networks of the normal regenerative process are specifically maintained
or altered in the tumor state. This strategy was applied to bladder cancer, a cancer derived from the bladder
urothelium, because normal bladder urothelium can be grown in culture at various different stages of proliferation
and differentiation thereby mimicking wound healing.

Constructing the network of normal proliferation and differentiation

Gene expression data of primary Normal Human Urothelium (NHU) non cancerous primary cell cultures in
various states of differentiation and proliferation was considered as an in vitro model of wound healing and used
to infer a large regulatory network. We applied LICORN[1], a data mining algorithm introduced by our team
that infers the targets of transcription factors from genome wide expression data. LICORN was shown to be
suitable for cooperative regulation and to scale up to the complexity of mammalian transcriptional networks.
LICORN is able to find the set of Transciption Factors that cooperatively regulate the expression of a given
gene. Furthermore, LICORN was previously applied[2] in yeast to infer a large regulatory network from gene
expression data. The authors showed that the clusters of genes extracted from the inferred regulatory network
had a higher functional enrichment than clusters based solely on gene expression.

Additionally to expression based information, the inferred normal regulatory network, comprising approx-
imately 5000 genes and 400 co-regulators, was enriched with systematic promoter sequence analysis of known
transcription factor binding sites model, public ChIP-chip and ChIP-Seq data as well as Protein Protein inter-
actions between co-regulators.

Note that the rest of our approach is not dependent on the network inference method. Aside from the co-
regulation information inferred by LICORN, any method able to infer large-scale regulatory networks such as
ARACNE[3] or GENIE3[4] could be used.

Measuring context specific regulation activity

The concept of using the knowledge over the network structure was shown to be successful at identifying key
regulators of specific phenotypes and processes [5, 6]. However, we were interested in a data transformation
approach in which neither a predefined gene-signature nor sample classification was needed to identify central
regulators.

In order to identify key regulators and to quantify their impact on their regulatory programs, we propose to
measure the influence of regulator genes on their targets in a given sample. The idea is to be able to quantify
the extent to which a Master Regulator (MR) is active on it’s target genes in a given sample or set of samples.
The measure is based on the divergence between the expression of the set of activated and repressed target
genes of a given regulator in a given sample. The basic idea is that if a set of genes is effectively activated



and another repressed by the same MR, and that this MR is active, the activated set of genes should be over
expressed and the repressed set should be under expressed. Therefore the more a MR is active on given sets of
targets (activated and repressed) the greater the distance between these sets will be. Measuring this divergence
will give an idea on the activity of a MR in a given sample, or set of samples, and more importantly on the
pertinence of the structure of the network.

Interestingly, when measured for each regulator in each sample, the measure of regulatory influence produces
a data set with the same number of samples but a reduced number of features representing the master regulators
activity. Therefore, we proposed[7] to use this measure in the context of classification and feature extraction.
We showed that the transformation of the data through the regulatory activity greatly improves the stability
and robustness of models trained in different datasets.

Regulatory influences underline function of Master Regulators in normal and cancer cells

The regulatory network inferred from the NHU data pointed out several previously described regulator of normal
urothelial differentiation and their validated gene targets. Alongside to these known MR, the computation of the
influence characterized new MR as well as their involvement in normal urothelial differentiation, proliferation
and growth arrest.

In an identical way the influence of the normal regulators was measured in 3 cohorts of 60, 120 and 180
bladder cancer transcriptomes (respectively from Stransky et. al. [8], the TCGA consortium and a private
unpublished data set). In order to estimate to what extent the normal regulation of growth is conserved in
tumor cells, the global influence (defined as the sum of squared influence in all samples for all MR) of the
normal network was compared to the influence of 1000 randomly generated networks with similar topology
(each regulator with the same number of target genes). The global influences were compared and shows that
the normal network is significantly conserved, more influent, than any random network (150 times the standard
deviation above the mean).

An analysis of the influence of normal regulators in bladder cancers pointed out a major loss of function of
Master Regulators of urothelial differentiation. This loss of differentiation was also observed in the co-regulatory
network in which known and novel regulators of normal differentiation form a dense network of cooperative
regulators and are virtually all lost in most bladder tumors. Additionally to these results, several MR show
the same activity profile in some bladder tumors than in the proliferating NHUs suggesting that the regulation
driving normal proliferation is maintained during tumorigenesis.
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