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Motif-based identification of master regulators and direct TF-target 
interactions in human and Drosophila gene networks 
 
Stein Aerts 
 
Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Belgium 
 
We revisit the problem of motif discovery in Metazoan co-expressed gene sets. We discuss in this 
talk how classical motif discovery, but also modern ‘track discovery’, can be complementary 
approaches to ChIP-seq assays and how they continue being invaluable to decipher gene regulatory 
networks. This is particularly true for biological systems that are less amenable to high-throughput 
methods, and for processes for which the master regulators are yet unknown. We illustrate the 
power of motif discovery by mapping an extensive gene regulatory network underlying Drosophila 
eye development. To this end, we exploit (1) tissue-specific gene expression across three Drosophila 
species; (2) multiple genetic perturbations and cell sorting experiments in the eye disc; and (3) open 
chromatin profiling using FAIRE-seq. We identify several new targetomes of eye-related transcription 
factors, such as Glass, the master regulator of photoreceptor differentiation. 
 
As a next step towards the integration of motif discovery with gene regulatory network inference, we 
developed iRegulon, a Cytoscape plugin that unites cis-regulatory sequence analysis with biological 
network tools. Using iRegulon, we re-analyzed microRNA target sets, signaling pathways, Gene 
Ontology classes, STRING and GeneMania networks, TF perturbation signatures, and finally twenty 
thousand cancer gene signatures. Through meta-analysis we summarize TF-target interactions 
yielding “meta-targetomes” that can be useful to annotate re-sequenced cancer genomes.  
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Abstract 
Computational analysis and prediction of transcription factor binding sites (TFBS) is one of the 
fundamental tasks in regulatory genomics. A TFBS model can be derived from a set of 
experimentally determined DNA sequences, specifically recognized by a transcription factor (TF). A 
typical approach is to apply computational de novo motif discovery tools. With ChIP-Seq as the new 
gold standard for genome-wide detection of TFBS in vivo it becomes possible to construct advanced 
TFBS models. Here we present a special motif discovery tool, diChIPMunk, which can produce 
dinucleotide positional weight matrices (diPWMs) from ChIP-Seq data. We show that diPWMs 
produced by diChIPMunk significantly outperform existing classic mononucleotide matrices in 
terms of TFBS recognition quality.  

The software is freely available: http://autosome.ru/dichipmunk/ 

Introduction 
Transcription regulation in higher eukaryotes involves transcription factors (TFs) specifically 
recognizing binding sites (TFBS) in DNA. Experimental techniques based on chromatin 
immunoprecipitation produce thousands of DNA segments putatively recognized by a TF. One of 
typical aims is to detect a common text pattern representing preferred TFBS. Careful representation 
of this pattern, the TFBS model, allows computational prediction of TFBS in genomic sequences of 
interest. 

The most widely used TFBS model is a positional weight matrix (PWM) directly computed from a 
gapless multiple local alignment of TFBS-containing sequences. PWM assumes independent 
nucleotide frequencies in different alignment columns, as there were no correlations between them. 

http://autosome.ru/dichipmunk/


At the same time, some more complex models based on ChIP-Seq data provided only incremental 
improvement over properly trained traditional PWMs [Bi2011]. 

A matrix of positional weights based on dinucleotide frequencies takes into account correlations of 
nucleotides in neighboring alignment positions and provides simple extension of the PWM model. 
Earlier it was already demonstrated that dinucleotide PWMs could outperform classic 
mononucleotide PWMs if learned from on a reasonably large set of sequences [Levitsky2007]. The 
remaining step is to properly utilize ChIP-Seq data for model training. 

Here we present diChIPMunk, a tool able to produce dinucleotide PWMs based on ChIP-Seq data. 

Results 
Earlier we presented ChIPMunk [Kulakovskiy2010], an effective algorithm for construction of 
traditional PWM models based on ChIP-Seq data. ChIPMunk performed efficiently and accurately 
in several independent benchmarking studies including a recent one of the DREAM consortium 
[Weirauch2013]. diChIPMunk is based on the same computational engine as ChIPMunk, and thus 
shares several advantages including usage of ChIP-Seq peak shape (the reads pileup profile) and a 
support for multi-threaded computations. To utilize ChIPMunk engine diChIPMunk uses a 
“superalphabet” approach converting initial DNA sequences written in a mononucleotide A-C-G-T 
alphabet into dinucleotide sequences with a AA-AC-AT…TT alphabet (with each nucleotide 
included in two neighboring dinucleotides). 

To test TFBS recognition quality we have used different ChIP-Seq datasets to compare 
diChIPMunk models with those of ChIPMunk and PWMs available from public sources. 

Here, as a case study, we used top 1000 ChIP-Seq peaks of NANOG and SOX2 TFs published in 
[Chen2008]. Even ranked peaks were used for model training; odd ranked peaks were used as 
control true positive sequences. Using a strategy from [Kulakovskiy2013] we have plotted ROC-
curves and calculated area-under-curve (AUC) values. Figure 1 presents results of the comparison. 

Several other examples of diChIPMunk models evaluation were presented in the corresponding 
paper [Kulakovskiy2013]. 

Conclusions 
diChIPMunk is able to produce dinucleotide PWMs that perform significantly better than 
mononucleotide PWMs. We provide diChIPMunk as a production-ready tool. diChIPMunk is going 
to be included in BioUML platform [Kolpakov2006] as a motif discovery algorithm along with 
several accompanying tools. As the dinucleotide PWM is a fairly simple model it becomes possible 
to adapt many existing supporting tools, such as TFBS prediction in a given sequence (i.e. motif 
finding), computing P-values for given score threshold levels etc for dinucleotide PWMs. We believe 
this will facilitate a wider usage of dinucleotide PWMs with more and moreChIP-Seq data becoming 
available. 



 

Figure 1. ROC curves of TFBS models for NANOG (left panel) and SOX2 (right panel) TFs. True 
positive rate was estimated using independent control subset of ChIP-Seq peaks. False positive rate 
was estimated based on PWM/dinucleotide PWM P-values as described in [Kulakovskiy2013]. AUC 
values are given in figure legends. HOMER, SwissRegulon and JASPAR PWMs were taken from 
corresponding collections. CHEN2008 PWM was presented in the same paper as the TF ChIP-Seq 
data. The SOX2 matrix from JASPAR collection was based on the same ChIP-Seq dataset. 
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The transcription factors democracy: Completely automated inference of 
genome-wide regulatory interactions from sequencing data 
 
Erik van Nimwegen 
 
Center for Molecular Life Sciences, Basel University, Switzerland 
 
How do gene regulatory networks control cell fate and identity in higher eukaryotic organisms? 
Although gene expression and chromatin state dynamics are ultimately encoded by constellations of 
binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), 
our understanding of this regulatory code and its context-dependent read-out remains very limited. 
Experimental researchers interested in elucidating the key regulatory interactions acting within a 
particular biological system of interest face the difficulty that in higher eukaryotes, there are 
thousands of potential regulators, and it is not feasible to investigate all these using direct 
experimentation. Although it has become relatively straight-forward, using next-generation 
sequencing, to obtain genome-wide measurements of gene expression, chromatin state, and TF-
binding dynamics, it is typically far beyond the expertise of experimental groups to connect such data 
to the actions of individual regulators. And even when experimentalists team up with expert 
computational biologists, inferring key regulators and their genome-wide interactions from high-
throughput data remains highly challenging, typically involving `case-by-case' development of 
methodology.  
 
In recent years we have developed a methodology that combines automated processing of next-
generation sequencing data with genome-wide predictions of TF binding sites and miRNA target sites 
to model gene expression or chromatin modifications in terms of these sites. This completely 
automated system, called ISMARA, is available through a web-interface (ismara.unibas.ch) and 
requires only the uploading of raw micro-array or sequencing (RNA-seq or ChIP-seq) data. ISMARA 
then automatically identifies the key TFs and miRNAs driving expression/chromatin changes and 
makes detailed predictions regarding their regulatory roles. These include predicted activities of the 
regulators across the samples, their genome-wide targets, enriched gene categories among the 
targets, and direct interactions between the regulators. 
 
In the presentation I will discuss various aspects of the methodology implemented in ISMARA, and 
illustrate the power of the approach by demonstrating that, for well-studied model systems, ISMARA 
consistently identifies known key regulators and their actions ab initio in a completely automated 
fashion and without any tunable parameters. 
  



Systematic identification of conserved non-coding sequences in plants 
 
Alan Moses 
 
Department of Cell and Systems Biology, University of Toronto, Canada 
 
Despite the central importance of noncoding DNA in gene regulation and evolution, our 
understanding of the genomic extent and nature of selection on plant noncoding regions remains 
limited. This is in contrast to other clades containing model organisms (mammals, fruit fly, budding 
yeast, etc.) where studies of sequence conservation across large numbers of related genomes have 
provided a powerful approach to identify and characterize functional noncoding sequences. To 
systematically identify conserved non-coding regions in Arabidopsis and its close relatives (crucifers) 
we sequenced three Brassicaceae species and analyzed them alongside six previously sequenced 
crucifer genomes. We compared the conservation of non-coding DNA in plants to what had been 
previously observed in other organisms. For example, although we find that these plants have 
shorter and fewer conserved non-coding sequences than have been observed in animals, genes 
involved in development, particularly transcription factors, are associated with large numbers of the 
most highly constrained non-coding sequences. Remarkably, since plants’ and animals’ most recent 
common ancestor was likely unicellular, this suggests that complex regulatory control of 
developmental patterning transcription factors evolved independently in the two major lineages of 
complex multicellular life. We also performed whole genome motif-finding on the conserved non-
coding sequences and identified known and novel transcription factor binding specificities, as well as 
other motifs. Finally, using population genomics data, we tested for more recent evidence of 
selection on the conserved non-coding sequences and regulatory motifs. 
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Introduction 

Genes are regulated by transcription factors (TF) binding to physiological target sites in the genome. 

Understanding the mechanisms by which TFs are recruited to their target sites is essential for the 

understanding of gene regulation. The recently introduced ChIP-Seq technology allows for genome-

wide mapping of all in vivo bound sites of a given TFs in a particular cell type at near base-pair 

resolution [1]. What has become clear from ChIP-Seq experiments is that the intrinsic binding 

specificity of a TF can only partly explain the in vivo site occupancy patterns, which were found to be 

remarkably tissue-specific.  

 

Several recent studies have reported that TF binding is influenced and can be chromatin contextual 

features such as DNA chromatin accessibility, nucleosome occupancy, or the presence of specific 

histone post-translational modifications [2,3]. Site occupancy may also be partly predictable from 

sequence intrinsic properties such as oligo-nucleotide composition, DNA structural parameters and 

evolutionary conservation. In this work, we use machine learning to assess the relative importance of 

such features in TF to target site recruitment process, in the hope to gain insights into transcription 

regulatory mechanisms. As test example, we use the sequence-specific DNA-binding protein CTCF 

which has been assayed by ChIP-Seq in many cell types. CTCF has been attributed diverse roles in 

gene regulation, including insulator activity, gene activation and repression, genomic imprinting and 

tumor suppressor [4].  

 

Study design, data and methods  

Our study primarily relies on recent data published by the ENCODE consortium [5]. The general idea 

is to use machine learning algorithms to build models that predict site occupancy at predefined target 

sites. We used two types of candidate target site list: (a) Predicted sites from a whole genome scan with 

a position weight matrix (PWM) and (b) 10 cell type-specific peak lists published by ENCODE. For 

both types of candidate sites we expressed cell-type specific CTCF occupancy as the number of ChIP-

Seq tags within a window of 200 bp around the site. In parallel, we collected for each site in each lists a 

number of associated predicted and experimental features (Table 1). We then applied machine learning 

algorithms to predict site occupancy from different subsets of associated features. Note that 

experimental features such as histone modifications or DNase I hypersensitivity were evaluated in two 

different ways: (a) by the total number of tag counts in a window around the site and (b) by computing 

a “shape-score” reflecting the similarity of the tag distribution around a particular site with the average 

tag distribution as seen in an aggregate plot. We applied machine learning in a binary class-prediction 

framework and by regression analysis. For class prediction the candidate site lists were first split into 

high and low occupancy classes. Support vector machines (SVM) combined with recursive feature 

selection performed better than random forests (RF) was used for class prediction, support vector 

regression (SVR) was used for model training with quantitative site occupancy data. The performance 

was evaluated by 10-fold cross-validation, except in the cases where data from one cell type were used 

to predict the results from another cell type. Performance was expressed as a Pearson correlation 

coefficient between predicted and experimentally determined site occupancy (Fig. 1A).    

 



Summary of results and selected examples 
Rad21, TFBS-score and DGF are the most important features that contributed significantly to the 

classification followed by histone marks. It was known before that CTCF associates with Rad21 in the 

so-called CTCF/cohesion complex. The very good performance of Rad21 confirms the previous reports 

that CTCF acts in close coordination with this protein. Other sequence and structural features showed 

relatively low importance and didn't contribute significantly to the classification accuracy when 

considering TBFS-score alone, however, they performed better in predicted CTCF sites than ENCODE 

peak list. In order to get an objective comparison between the two datasets we used top two features 

(showing maximum contribution) to build model on one cell line and prediction on other cell lines. In 

addition, five histone marks were also used for classification in five cell lines (limited due to dataset 

availability), where H3K4me1 a distal mark showed highest importance in classification. The two 

cancerous cell lines in the dataset K562 and HepG2 showed similar patterns among themselves but a 

distinct pattern when compared to other normal cell lines indicating that they has varied cell specific 

CTCF sites.  

 

 
Figure1: A) SVR model was built on training dataset from K562 and used to predict CTCF tags on test dataset from K562 

cell line. Graph shows the Pearson's correlation for measured and predicted CTCF sites on test dataset. B) Feature 

importance for regression on CTCF sites from ENCODE peak list for K562 cell line. C) SVR model was built on K562 and 

H1-hESC cell line for both dataset (ENCODE peak list and predicted CTCF sites), these models were then used to predict 

the CTCF tags on other cell line (Pearson's correlation coefficient shows the performance of model on cross-cell line 

prediction). 

Table 1: Overview of features used to predict CTCF site occupancy 

Feature type Feature description Number Data source/ Reference 

Sequence intrinsic Mono-penta nucleotide frequency 1364  

Nucleosome occupancy 1 [6] 

Structural parameters 10 [7] 

CTCF TFBS-score 1 JASPAR [8] 

Evolution/Polymorphism Avg PhastCons score 1 UCSC database 

SNP Frequency 1 dbSNP132 

Tissue-specific 

experimental features 

(tag counts in window 

around site and shape 

based evaluation) 

Distance to nearest TSS 1 ENSEMBL database 

DNase I  1 GEO series (GSE26328) 

Histone modifications 8 GEO series (GSE29611) 

PolII 1 GEO series (GSE32465) 

RAD21 1 GEO series (GSE32465) 

                

To investigate the degree of tissue specificity we built models using TFBS-score, DGF, Rad21, average 

nucleosome occupancy/ base, average distance from TSS site and certain histone marks performed best 

in the prediction (Figure 1B). The results showed in general high correlation coefficient within and 



across cell lines with certain notable exception (Figure 1C). Models built from fibroblast cell lines were 

good predictor of other fibroblast cell lines compared to other cell lines. The other cell line which 

showed consistently varied performance in cross-prediction experiment is K562, the cancer cell line 

considered in this study. We also note that tissue-specificity of trained models are better predictor of 

PWM predicted sites lists than experimental peak lists. This is not really surprising as the experimental 

peak list exclude those sites which totally unoccupied in given tissue.   
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Following functional clues based on the genetic commonalities of diabetes 
and cancer 
 
Struan F.A. Grant 
 
Division of Human Genetics, Children's Hospital of Philadelphia Research Institute, Perelman School of 
Medicine, University of Pennsylvania, USA 
 
The repertoire of genes already established to play a role in the pathogenesis of type 2 diabetes 
(T2D) has grown substantially due to recent genome wide association studies (GWAS). In 2006, we 
discovered the strong association of variants in the transcription factor 7 like 2 (TCF7L2) gene with 
T2D. Other investigators have already independently replicated this finding in different ethnicities 
and, interestingly, from the first GWAS of T2D in Caucasians, the strongest association was indeed 
with TCF7L2; this is now considered the most significant genetic finding in T2D to date.  
 
Interestingly, there is also a very strong connection between TCF7L2 and cancer. The key 8q24 locus 
found to be the most strongly associated genomic region with a number of cancers through GWAS 
contributes to the disease pathogenesis through mutation of an upstream TCF7L2-binding element 
driving the transcription of the MYC gene. Indeed, is has been known for some years that TCF7L2 
harbors specific mutations that strongly influence colorectal cancer risk plus genomic sequencing of 
colorectal adenocarcinomas identified a recurrent VTI1A-TCF7L2 gene fusion. Furthermore, many of 
the T2D GWAS-derived risk conferring alleles have been shown to protect against prostate cancer; in 
addition, THADA, JAZF1 and TCF2 are loci that have been strongly detected in separate GWAS 
analyses of prostate cancer and T2D. Thus, TCF7L2 and other T2D associated genes also appear to be 
key players in cancer pathogenesis; however, this mechanism is still far from understood. 
 
We previously performed chromatin immunoprecipitation followed by high-throughput sequencing 
(ChIP-seq) with this transcription factor to elucidate its binding repertoire genome wide. 
Unexpectedly, and despite employing a carcinoma cell line, the genes with TCF7L2 binding sites are 
strongly enriched in pathway categories related to metabolic-related functions and traits, further 
suggesting a role for metabolism in cancer. Furthermore, the list of loci bound by TCF7L2 harbors a 
highly significant over-representation of GWAS loci associated with T2D and cardiovascular disease. 
 
With all these intriguing facts in mind, we are taking forward the loci that are common to T2D and 
cancer GWAS outcomes and investigating the impact on cell proliferation with the ultimate goal of 
testing their role in beta-cell proliferation in mice, a mechanism which still largely eludes the 
diabetes research community. 
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MOTIVATION
Functional genomics aims to understand dynamic fea-
tures encoded in the genome such as transcription of
genes, thereby frequently using results from high through-
put approaches. Transcription, RNA splicing and trans-
lation are the key steps in the process of gene expres-
sion. Production of a specific gene product can be
increased or decreased by regulation of any of these
steps. DNA microarrays are used to measure expres-
sion levels of a large number of genes simultaneously
over a set of experimental conditions. In recent years,
expression levels of thousands of genes are not only
measured over sets of experimental conditions but also
across many time points. To analyze such high through-
put 3D datasets we need computational approaches.
Coexpression analysis helps to retrieve functionally co-
herent group of genes that are often coregulated by a
common transcription factor. Clustering, one of the un-
supervised learning approaches can retrieve a group of
genes having similar expression profiles over all experi-
mental conditions. But it has been observed that genes
are not necessarily to be coexpressed over all samples
in a gene expression dataset, i.e.- genes can have sim-
ilar expression profiles over a subset of samples. To
simultaneously group genes and samples, biclustering
or subspace clustering methods are used. However, bi-
clustering algorithms fail to cluster genes, samples and
time points simultaneously in a time series gene expres-
sion data. To cope with that problem triclustering al-
gorithms are used. Zhao et al. proposed a triclustering
algorithm TRICLUSTER to find groups of coexpressed
genes in such time-series gene expression data set [1].
Tchagang et. al. recently proposed OPTricluster al-
gorithm that is also able to cluster genes, samples and
time points simultaneously [2]. One of the limitations
of OPTricluster is that it can only cope with short time
series gene expression datasets. In our previous work
we have proposed triclustering algorithm δ-TRIMAX
to mine such 3D gene expression datasets by introduc-
ing a novel definition of mean squared residue score

for mining 3D datasets [3]. The goal of δ-TRIMAX
is to retrieve maximal triclusters having mean squared
residue score below a threshold δ. The limitations of
δ-TRIMAX is that it is unable to extract overlapping
triclusters. As δ-TRIMAX replaces each element of tri-
cluster found in one iteration by random numbers, it
can affect the originality of the dataset. In this pa-
per we introduce the triclustering algorithm EMOA-δ-
TRIMAX that can retrieve a group of genes that are
coexpressed and coregulated over a subset of samples
across a subset of time points. Here we have used Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) to
balance the trade-off between the aforementioned con-
flicting objectives i.e. minimizing mean squared residue
score, maximizing volume of the triclusters and generate
pareto optimal solutions that are equally distributed in
the objective space [4]. Additionally we have also max-
imized Spearman correlation coefficient of resultant tri-
clusters. Our proposed algorithm also effectively deals
with the drawbacks of our previously proposed algo-
rithm δ-TRIMAX.
Regulation of transcription by transcription factors (TFs)
can be initiated through binding to defined cis-regulatory
elements in promoters. For accomplishing the function
as an activator or inhibitor, TFs must recognize the re-
gions where they should bind to and they do so through
DNA-binding domains (DBD) [5]. A systematic classi-
fication of TFs according to their DBDs can help to
predict the DNA-binding specificity of TFs with as yet
ill-characterized DNA-binding properties. Paralogous
transcription factors may have derived from a common
ancestor by a gene duplication event and these tran-
scription factors are assumed to participate in a novel
function or some specialized ones of their original func-
tions. Many of them still share major properties of
their DBD and, thus, bind to identical or highly re-
lated cis-regulatory elements [5]. Mutation of the acti-
vation domain of paralogous transcription factors may
yield alteration of their interacting partners in spite of
having similar DNA-binding domains. Divergence of



Figure 1: Differentially expressed targets of paralo-
gous transcription factor across different subset of time
points

expression profiles of paralogous transcription factors
across tissues or time points can be a cause for par-
ticipating in distinct pathways or regulating the same
genes across different tissues or time points. For in-
stance it has been previously reported that two paralo-
gous transcription factors Pax2 and Pax3 regulate the
gene c-Ret in kidney and neural crest, respectively [6].
Though recent works reveal roles of cardiac transcrip-
tion factors in molecular regulation of pluripotent stem
cell derived cardiomyocytes differentiation, the roles of
cardiac paralogous T-Box family transcription factors
are still poorly understood during different stages of
cardiac differentiation.

RESULT
In this work we have applied our proposed EMOA-δ-
TRIMAX algorithm on a time series gene expression
dataset that contains mRNA expression profiles dur-
ing differentiation of human induced pluripotent stem
cell (hiPSC) derived cardiomyocytes. This dataset con-
tains 48803 Illumina probe ids, 12 time points (day 0,
3, 7, 10, 14, 20, 28, 35, 45, 60, 90, 120) and 3 samples
(GEO accession number GSE35671). Expression values
at each time point were generated by three independent
runs (Run 1-3) [7]. Our algorithm results in 100 triclus-
ters that cover 88.14% of all probe-ids, 100% of all time
points and 100% of all samples. We could show that
EMOA-δ-TRIMAX outperforms other triclustering al-
gorithms. It has been reported in the original work that
the differentiation of hiPSCs to cardiomyocytes was ob-
served during days 0, 3, 7, 10, 14, 20, 28 and on day 14
heart beating was first perceived. Days 35, 45, 60, 90
and 120 are reported as post-differentiation time points
[7]. To establish biological significance of group of co-

Figure 2: Differentially expressed targets of paralo-
gous transcription factor across different subset of time
points

expressed genes, we checked for KEGG pathway and
transcription factor binding site (TFBS) enrichment,
the latter by using the TRANSFAC library (version
2012.2) [8]. We used an internal database of around 52
million TFBS predictions that have high affinity scores
and are conserved between human, mouse, dog and
cow [9]. Out of these 52 million conserved TFBSs we
have selected the best 1% for each TRANSFAC matrix
individually to select the most specific regulator (tran-
scription factor) - target interactions. We have observed
KEGG pathway and TFBS enrichment for 100% and
98% of resultant triclusters, respectively. Through our
analysis we identified similar expression profiles of par-
alogous TFs TBX3 and TBX5 across days 0, 14 but
divergence in their expression profiles across days 14,
20, 45 over all samples. Figure 1 shows that at early
time points both TBX3, TBX5 and at later time points
only TBX5 regulate target genes that participate in dis-
tinct sets of pathways. Additionally we observed that
both TBX3, TBX5 and only TBX5 regulate MAPK
signaling pathways through binding promoter regions of
different target genes at early and later time points, re-
spectively. We also observed similar expression profiles
of paralogous transcription factors TBX4 and TBX5
across days 3, 7 but divergence in their expression pro-
files across days 14, 20, 45 over all samples. In Figure
2 we can observe that at early time points both TBX4,
TBX5 and at later time point only TBX5 regulate dis-
tinct sets of genes that participate almost different sig-
naling pathways. It has been reported in previous stud-
ies that ErbB, calcium, neurotrophin, VEGF, hedgehog
signaling pathways play critical roles in cardiac differ-
entiation and development [10–14]. It has been revealed
in a previous study that TBX5 plays a crucial role in



embryonic cardiac cell cycle progression and depletion
of TBX5 leads to cardiac programmed cell death [15].
Interestingly through our analysis we also observed that
TBX5 is expressed in both early and later time points.

CONCLUSION
Our integrated systems biology approach reveals exclu-
sive usage of paralogous transcription factors of the T-
BOX family through identifying diversity of their ex-
pression profiles and provides new insights into their
roles in regulating cardiac differentiation.
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BACKGROUND 

Transcription factors (TFs) have long been recognized as important regulators of haematopoietic cell 

type identity.  Specific TFs have been shown to be critical for regulating pluripotency genes in 

haematopoietic stem cells while others drive differentiation to mature haematopoietic cell types 

(Orkin and Zon 2008).  As a result, TFs have been extensively studied at all stages of haematopoietic 

development (Wilson et al. 2011).  Furthermore, advances in the generation of TF binding maps by 

ChIP-seq permitted investigations at the genome level.  While an abundance of ChIP-seq data exists 

for different haematopoietic cell types, not much is known about the genome-wide impact of TF 

binding in driving transcriptional programs of multiple cell types. 

An observation from several independent ChIP-seq studies is the strong cell-type-specific binding 

pattern displayed by many haematopoietic TFs (Hannah et al. 2011; Wei et al. 2011; Pilon et al. 

2011).  These studies demonstrated that the binding profile of different TFs in the same cell type 

show stronger correlation than the binding profiles of the same TFs in different cell types.  

Interestingly, this cell-type-specific binding pattern was also observed for so-called ‘master 

regulators’ of haematopoietic stem cells, therefore, raising the question as to how ‘master 

regulators’ dictate cell type identity?  Most importantly, is this observation an indication of 

‘functional’ rather than ‘opportunistic’ binding events?  

To address these questions, we have analysed the genome-wide binding maps of 10 key 

haematopoietic stem cell TFs in both primary mast cultures and a progenitor cell line.  In addition, 

expression profiling by RNA-seq on both cell types were analysed in conjunction with the TF binding 

data to provide a more comprehensive view of gene expression regulation. 

 

RESULTS 

Gene expression profiling in mast cells and a progenitor cell line (HPC7) showed that many 

haematopoietic stem cells ‘master regulators’ were indeed expressed at similar levels in both cell 



types.  We also showed that HPC7 closely resembles common myeloid progenitors (precursors of 

mast cells) and recapitulates the gene expression profile of early blood stem/progenitor cells.  

Shared expression of key stem cell TFs, therefore, suggests that a more detailed comparative 

analysis of genome-wide binding patterns in both cell types may provide new insights into the 

transcriptional control of cell type identity. 

A global comparison of HPC7 and mast ChIP-seq data for 10 stem cell TFs (Ctcf, E2a, Erg, Fli1, Gata2, 

Lmo2, Meis1, PU.1, Runx1, Scl) revealed very little overlap in binding sites (<30%).  Moreover, 

pairwise correlation analysis of all 20 genome wide binding profiles followed by hierarchical 

clustering revealed clustering of all TFs by cell type, with the exception of Ctcf.  These observations 

suggest that binding of the shared TFs are largely cell-type-specific for 2 closely related 

haematopoietic cell types.  Having identified predominantly cell-type-specific binding patterns for 

key regulatory TFs raised the question as to whether TFs are passively recruited to cell-type-specific 

genomic regions of open chromatin with no major regulatory impact or actively participate in 2 

different transcriptional programmes.  To evaluate the extent to which cell-type-specific binding of 

shared TFs might be associated with gene expression, we developed multivariate linear regression 

models to correlate changes in TF binding (∆TF) with changes in gene expression (∆GE).  Fitting in a 

simple linear regression model showed some correlation between ∆TF and ∆GE (R2 value ~22.7%).  

Further application of the linear model on subsets of the data – genes with at least 5TFs bound – 

increased the R2 value up to ~41.4%.  Although higher variability was explained, this is not ideal 

since many genes were thrown out.  We then sought an alternative approach by using generalized 

additive models (GAM) and by incorporating all pairwise interaction of shared TFs to account for 

cooperation between TFs.  This approach allowed us to fit concordant pairs of TFs to differential 

gene expression in a non-linear fashion.  GAM with interaction terms correlated more strongly with 

gene expression changes (R2 ~ 41.8%) than GAM without interaction terms (R2 ~ 25.4%).  We were 

also able to identify interesting TF pairs that co-operate to affect cell-type-specific gene expression. 

The modelling approach suggested that cell type specific binding of shared TFs makes meaningful 

contributions to differential gene expression.  However, it remained unclear whether cell-type-

specific binding is largely mediated through direct or indirect binding to DNA.  To do this, we carried 

out a comprehensive motif analysis of common as well as cell-type-specific TF-bound regions.  We 

found that consensus sequence motifs of shared TFs were enriched across common and cell-type-

specific regions indicating direct DNA binding of the shared TFs.  Does this then suggest that cell-

type-specific TFs are driving reorganization of shared TFs to cell-type-specific sites?  Indeed, we 

observed specific enrichment and depletion of motifs in cell-type specific regions.  From this 



analysis, Mitf and c-Fos emerged as potential candidate regulators because their motifs were 

enriched only in mast-specific regions and our RNA-seq data showed significant over-expression of 

these genes in mast cells.  We went on to generate ChIP-seq data for these 2 mast-specific factors 

and analysed overlapping binding sites with the 10 shared TFs in HPC7 and mast cells.  We were able 

to show that Mitf and c-Fos binding co-occupy a substantial proportion of regions bound by shared 

TFs in both cell types but not HPC7-specific regions.  Mitf and c-Fos also bind to mast-specific 

regions, and this ‘new’ binding is accompanied by relocation of shared TFs to these regions.   

 

CONCLUSION 

Taken together, these data are consistent with a model whereby mast cell specific and shared TFs 

contribute to gene regulation in mast cells by binding to both common and mast cell specific 

regulatory regions.  A comprehensive understanding of how TFs interact with the genome will not 

only advance basic research but improves our mechanistic understanding of cellular reprogramming 

strategies developed within the stem cell and regenerative medicine area. 
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Assembly and interrogation of tumor-specific regulatory models reveals 
master regulators of tumor maintenance and chemosensitivity 
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The recent onslaught of molecular data, across multiple human malignancies, is producing an 
unprecedented repertoire of genetic and epigenetic alterations contributing to tumorigenesis and 
progression. Yet, the direct impact of this knowledge on tumor treatment and prevention is still 
largely unproven. Loss of tumor suppressor function is difficult to target pharmacologically and, with 
a handful of exceptions, alterations providing potential drug targets are relatively infrequent in 
cancer patients and are thus unlikely to support clinical development. 
 
By reconstructing and interrogating the in vivo regulatory logic of the cancer cell, which integrates 
multiple aberrant signals resulting from genetic and epigenetic alterations, systems biology is starting 
to elucidate and mechanistically validate both oncogene and non-oncogene addiction mechanisms. 
These mechanisms are exquisitely dependent on the molecular landscape of cancer subtypes, can be 
targeted pharmacologically, and are frequently synergistic, thus providing uniquely specific entry 
points for combination therapy.  
 
In this presentation, we will discuss recent result in the discovery of synergistic, non-oncogene 
addiction mechanisms and their application to the stratification and treatment of high-grade glioma, 
non-small cell lung cancer, and prostate cancer. The approach is highly extensible and has been 
applied to a variety of additional tumor subtypes, to the study of stem cell differentiation, 
reprogramming, and pluripotency control, as well as to the study of neurodegenerative diseases. 
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As a part of the project to identify, validate, and perturb key genes and network 

interactions predicted to underlie the metabolic adaptations of M. tuberculosis and 

reprogramming of host cells during TB infection, we built a transcriptional network of 

MTB. So far, we successfully carried out ChIP-Seq experiments for 90 TFs and developed 

a pipeline to computationally analyze the data. We verified the quality of our data by 

comparing multiple biological replicates for at least 15 TFs. For 10 key TFs, we also 

confirmed that our experiments, although carried out in conditions containing oxygen, 

apply to hypoxic coditions characteristic of MTB infection. While we detected all 

previously known binding sites for a few well-studied regulators in MTB (KstR and DosR), 

we also found many more binding instances and significantly extended transcription 

factor regulons. 

In order to validate transcriptional function of predicted binding sites, we carried out 

complimentary overexpression experiments for all 200 TFs of MTB (replicate 

experiments were performed for a number of TFs). This data was used to assign a 

probability of observing the expression level for each gene identified to be bound by a 

given transcription factor in the overexpression microarrays (Figure 1). For each site, we 

examined all genes around the site to determine if the overexpression of the 

corresponding TF significantly altered expression of these genes. Binding sites were 

validated if any gene in the window displayed an expression level greater than a 

threshold value after correction for multiple testing. 

Applying this method to all sites from analyzed TFs, we could assign a potential 

regulatory role to 25% of binding sites. Stronger binding sites were more often 

associated with regulation than weaker sites, suggesting a possible correlation between 

binding strength and regulatory impact. However, it appeared that clusters of weak 

binding sites had a stronger regulatory role than weak singletons suggesting cooperative 

mechanism of interaction. Also, strong binding sites were often located in the proximity 

of weak sites which suggested the role of weak sites in modulating affinity. 



 

The canonical model of the transcriptional regulation in prokaryotes restricted binding 

site location to proximal promoter region and suggested that the binding sequence is 

the main determinant of the binding. The distance between binding sites and associated 

target genes displayed a pattern partially consistent with expectation: about half of 

binding sites were located within 1000bp of the start codon of the gene they were 

predicted to regulate. Most binding sites located in upstream intergenic regions were 

validated by expression data. However, 76% of binding sites fell into annotated coding 

regions and a significant proportion could be assigned regulation. 

Integration of independent binding and expression datasets allowed us to test which 

binding site characteristics – binding motif strength, ChIP-Seq coverage, relative location 

of site and potential target genes, and presence of other binding sites – are essential for 

assigning regulatory role. 

Although a conservative binding motif was found for most transcription factors, only a 

fraction of motif instances appeared bound in the experiment. The experimentally 

determined motif for weak binding sites was often a degraded version of the motif 

detected for the strong binding sites. Some low-affinity binding sites appeared occupied 

by the transcription factor while many high-affinity binding sites were not. 

For example, we detected 100 binding sites for Rv0602c (Figure 2). Site coverage ranges 

from 40 times above the median to 1 as indicated in the right side of the figure. The 

strong experimentally detected binding sites are characterized by a TCATGA motif. With 

coverage, this motif degrades to the TCAT core with some conservation at accesory 

positions as reflected by the motif score in the left side of the figure. However, if we use 



the strong motif to scan the genome, we find many additional instances unbound in the 

experiment. Interestingly, we find exactly exactly same 13 nulceotides bound in one 

area of the genome and not bound in another. 

 

By comparing experimental and computational binding site distributions, we defined 

‘hot’ areas of the genome (that were depleted of binding in the experiment despite the 

existence of motif instances) and ‘cold’ areas (that were bound by more TFs than 

expected from the regression model). A nucleoid-associated protein LSR2 with a known 

role in organizing DNA was associated with these regions, as well as other TFs with no 

known structural function (for example, Rv0081). Our data suggested that some 

transcription factors had both distinct regulatory role and significant impact on DNA 

organization. 



The genetics of individuals: why would a mutation kill me, but not you? 
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To what extent is it possible to predict the phenotypic differences among individuals from their 
completely sequenced genomes? We use model organisms (yeast, worms and tumours) to 
understand when you can, and why you cannot, predict the characteristics of individuals from their 
genome sequences. 
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Genome wide association studies (GWAS) have emerged as a powerful tool for the identification of 

genetic variants that are associatedwith complex phenotypes and disease.Despite the many newly 

discovered associations, thevariants identified by these studies typically explain only a small fraction of 

the heritable component of disease risk[1]. Furthermore,few genetic variants are found within coding 

regions of genes, and theelucidation of the molecular mechanism by which these loci influencethe 

phenotype remains challenging. Most loci mapto inter-genic regions of unknown function and, 

whilesome of them can be connected to nearby genes by linkage disequilibrium, a sizable fraction lie in 

genomic regions with no clear connection to known disease biology. 

 

The genetic component of complex phenotypes can also arise from a large number of small effect 

loci[2]. In this case, the heritability would not be due to a single common or rare variant, but rather to 

combinations of common variants, each one contributing a small additive effect.  These combinations 

can be epistatic interactions among common alleles, or multiple genetic variations that interact through 

different layers of genomic regulation. Complex phenotypes therefore would have a much more 

complex genetic architecture due to the joint action of very many loci of small effect [3]. Identifying 

interactions between multiple loci requires the application of statistical and computational methods that 

detect patterns of epistasis across the genome. This involves performing genome-wide searches of 

high order combinations of SNPs or SNPs and genes, and requires testing a large number of 

hypothesis with often limited sample sizes, leading to a reduced statistical power. Furthermore the 

computational search becomes unmanageable for more than a few hundredSNPs.  

 

In this work we explore an innovative approach to identify the molecular mechanisms of genetic 

variants previously associated to disease. We have implemented gVITaMIN (Genetic Variability 

IdenTifies Missing INteractions), an algorithm that searches forfunctional genetic associations 

following a two-step approach. First, gVITaMIN searches for direct associations between a locus 

and gene expression levels. However a SNP can be functionally important for a phenotype without 

displaying any association with gene expression, therefore in a second step, gVITaMIN searches 



for associations between a locus and changes in gene activity. Concretely, we analyze whether 

aputative locusinfluences the regulatory activity of a transcription factor (TF) over a large set of its 

target genes (TG). This influence is measured as a difference in the correlation between the TF and 

its TGs conditioned upon the presence of the variant. 

 

In recent years, a plethora of epigenetic modificationsin the human genome have been 

characterized and shown to play diverse roles in gene regulation, cellular differentiation and the 

onset of disease. In particular, regulatory elements such as transcriptional enhancers and silencers, 

or chromatin marks such as promoters and enhancers, have been shown to play a crucial role in the 

establishment and maintenance of specific gene regulatory programs. These elements can be 

perturbed by genetic variants. For instance, mutations in regulatory elements can disrupt or enhance 

the binding of transcription factors and alter gene expression; polymorphisms that overlap with 

chromatin marks can prevent regulation through methylation or acetylation and hinder transcription 

factor binding, etc. In order to integrate this level of genomic regulation, we use to the 

ENCyclopedia Of DNA Elements (ENCODE) [4, 5] to identify loci that map to characterized 

functional elements of the human genome. These loci are scored according to their proximity to the 

genomic element, and linked to the gene or genetic program associated to the functional mark.  

 

Finally, cumulative associations in a particular pathway are likely to pinpoint specific regulatory 

programs associated with a disease.We therefore search for functional variants associated to a 

phenotype that cluster on biological units, such as genes or pathways.We combinethe TFs and TGs 

predicted to be associated to the loci with the genes and genetic programs identified through 

genomic mapping, and search for enriched pathways on these genes usingGene Set Enrichment 

Analysis (GSEA) [6]. These pathways are likely to be phenotypically relevant to the 

physiopathology of the disease and provide insights into the molecular mechanisms underlying 

them. 

 

We have applied gVITaMIN to the study of genetic variants associated to breast cancer 

susceptibility. We will present preliminary data identifying an intriguing association between 

BARD1, a genethat forms a heterodimer with BRCA1, and it is essential for the stability of 

BRCA1. Several variants at this locus have been reported to be associated with high risk 

neuroblastoma and colon cancer, suggesting a role in disease that is active across different cancers 

phenotypes.  
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Vertebrate promoters differ with respect to the precision of transcription star site (TSS) selection and 
the sequence motifs that determine it. The highly precise transcription start sites are found at fixed 
distances from e.g. TATA box motifs, while most TATA-less promoters allow transcription to start 
within a broader region. Here we report that TSS selection rules change systematically on subsets of 
promoters in development and differentiation time courses. The first and most intriguing is the 
promoter grammar change during maternal to zygotic transition during early embryonic 
development. We have analysed transcription initiation sites at 1bp resolution in combination with 
histone modification at core promoter regions at high spatial precision in the course early 
development of zebrafish. We show that the switch from maternal to zygotic transcriptome is 
accompanied by a switch between two fundamentally different mechanisms for defining 
transcription initiation. Upon zygotic transcription activation, the maternal specific W-box motif 
dependent TSS definition is replaced with a SS|WW dinucleotide enrichment boundary-associated 
grammar. The two grammars coexist in core promoters of ubiquitously expressed genes in close 
proximity or in an overlapping fashion and thus enable the continuous expression of these genes in 
the two very different intracellular environments. The switch in promoter interpretation constitutes 
a central part of the mechanism for setting up the promoters for the regulation of early 
development. We show that related, albeit less dramatic systematic changes in TSS selection occur 
during male spermatogenesis and skeletal muscle differentiation. To ensure gene expression in all 
stages of these processes, the corresponding promoters must accommodate all the required 
grammars, often in an overlapping fashion. 
  



Drosophila Pol II core promoters cluster into four classes characterized by 
distinct sets of motifs, regulatory properties, and nucleosome patterning 
 
Holger Hartmann*, Mark E. L. Heron*, Anja Kiesel*, Lukas Utz, Claudia Gugenmus, and Johannes 
Söding 
(* equal contributions) 
 
Gene Center Munich and Department of Biochemistry, Ludwig Maximillian University, Germany 
 
Core promoters (CPs) are the sites in the genome that recruit the basal transcription machinerie in 
order to initiate transcription. High-throughput measurements of transcription start site distributions 
have established the existence of two classes of eukaryotic CPs: Narrow-peaked or “focussed” 
promoters are usually highly regulated, while broad-peaked or “dispersed” promoters mostly belong 
to constitutively expressed housekeeping genes. These two classes differ in their motif composition, 
and it is becoming clear that their motifs influence which combinations of basal transcription factors 
assemble into a functional preinitiation complex.  
 
We have systematically studied, at the example of Drosophila melanogaster, the link between core 
promoter elements and the resulting regulatory properties. Our motif discovery method XXmotif 
finds 12 known and 7 novel, conserved core promoter elements (CPEs). These motifs fall into four 
groups that tend to co-occur and that characterize four overlapping classes of CPs: (1) strongly 
regulated, stallable, INR-enriched CP, mostly from developmental genes, (2) highly inducible, TATA-
containing CPs, (3) constitutive CPs from housekeeping genes, and (4) very strongly constitutively 
active CPs, mostly from ribosomal genes. Furthermore, each class has a characteristic dinucleotides 
profile that is correlated with its nucleosome patterning and 5’-nucleosome-free region. The four CP 
classes hint at four major, alternative pathways of transcription initiation, each of which uses a 
different set of basal transcription factors and thereby determines regulatory response. Despite 
employing different motifs, the same four classes of CPs are likely to exist in humans and other 
species. 
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The regions bound by sequence-specific transcription factors can be highly variable across different 
cell types, despite the static nature of the underlying genome sequence. This has been partly 
attributed to changes in chromatin accessibility, but a systematic picture has been hindered by the 
lack of large-scale datasets. In this talk I will describe our efforts analyzing 456 binding experiments 
for 119 regulators and 84 chromatin maps generated by ENCODE in six human cell types and relating 
those to a global map of regulatory motif instances for these factors. We find specific and robust 
chromatin state preferences for each regulator beyond the previously-reported open-chromatin 
association, suggesting a much richer chromatin landscape beyond simple accessibility. The 
preferentially-bound chromatin states of regulators were enriched for sequence motifs of regulators 
relative to all states, suggesting that these preferences are at least partly encoded by the genomic 
sequence. Relative to all regions bound by a regulator however, regulatory motifs were surprisingly 
depleted in the regulator's preferentially-bound states, suggesting additional non-sequence-specific 
binding beyond the level predicted by the regulatory motifs. Such permissive binding was largely 
restricted to open-chromatin regions showing histone modification marks characteristic of active 
enhancer and promoter regions, whereas open-chromatin regions lacking such marks did not show 
permissive binding. Lastly, the vast majority of co-binding of regulator pairs is predicted by the 
chromatin state preferences of individual regulators. Overall, our results suggest a joint role of 
sequence motifs and specific chromatin states beyond mere accessibility in mediating regulator 
binding dynamics across different cell types. 
 
*Joint work with Manolis Kellis 
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During development of a multicellular organism, cells undergo an orchestrated series of 
transformations. Through coordinated proliferation and differentiation a complex system of 
thousands of complementary cells is formed. One of the key aspects of this process is regulation of 
transcription, allowing different cells to express different sets of proteins leading to variablility in cell 
morphology and function. In this process, expression of thousands of genes needs to be tightly 
controlled as misexpression of an important gene in a wrong tissue or at a wrong developmental 
stage would in many cases lead to developmental defects. This level of control is achieved through 
the action of transcription factors binding to enhancers, or more generally regulatory elements, 
leading to very selective activation or repression of their target genes. 
 
Enhancers usually act on target genes' promoters by physically interacting (through co-factor 
proteins) with the core transcriptional machinery. While in majority of cases of studied enhancers we 
have a notion of a target gene, it may be diffcult to assign regulatory elements to target genes, 
especially in the light of recent findings showing enhancer sharing between genes for both humans 
(Sanyal et al., 2012) and mice (Li et al., 2012). 
 
With the progress of mapping transcription factor binding sites through chromatin 
immunoprecipitation-based experiments, we are getting closer to having complete maps of 
regulatory elements in multiple species (Negre et al., 2011). With complementary techniques such as 
DNAse I hypersensitivity (Thomas et al., 2011) and FAIRE (Giresi et al., 2007) we can get an even 
more comprehensive picture of the universe of regulatory regions genome- wide, therefore the need 
for making comprehensive models of regulatory interactions is becoming one of the main challenges 
in the field. 
 
In a recent work (Wilczyński et al., 2012), we have shown for mesoderm development in Drosphila 
that given a comprehensive set of Chip-Chip experiments for relevant transcription factors (Zinzen et 
al., 2009), it is possible to make a computational model making accurate predictions of tissue- and 
stage-specific gene expression patterns. One of the key elements of the model, indispensible without 
loss of prediction accuracy, was at least a rudimentary notion of regulatory domains, in this case 
based on binding of insulator proteins (Negre et al., 2010). 
 
In order to explore the problem of predicting regulatory domain bound- aries more deeply, we have 
used supervised machine learning approach to make a model of boundary elements using 
modENCODE data. The model was trained on large scale mapping of chromatin domains (Sexton et 
al., 2012) and subsequently tested on independent datasets, both high-throughput (Filion et al., 
2010) and targeted tests of insulator regions through luciferase assays (Srinivasan and Mishra, 2012). 
Our model achieves over .80 AUC in cross-validation experiments, generalizes well across different 
datasets and outperforms other approaches such as Hidden Markov Models (Ernst and Kellis, 2012) 
or sequence based predictions (Srinivasan and Mishra, 2012). 
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Background 

In eukaryotic cells the genome is organized into chromatin. The accessibility of the chromatin varies from one cell-
type to another. The resulting constraint on protein-DNA binding provides an important layer of gene regulation. 
Recent epigenomic studies have uncovered diverse classes of regulatory elements, many of which are located in the 
regions previously viewed as "junk" DNA, providing strong evidence that chromatin states play a critical role in 
mediating cell-type specific transcriptional activities. However, the mechanisms underlying the variation of chromatin 
states remain poorly understood. 

We have investigated the role of DNA sequence in mediating the cross cell-type variability of chromatin states with 
the focus on the histone mark H3K27me3, which mediates cell-type specific gene silencing [1] and plays an important 
role in the maintenance of cell identity and lineage differentiation [2] [3] . While it is well known that H3K27me3 
occupancy is highly enriched at GC rich DNA elements [4], here we focus on distal regions where its recruiting 
mechanism is less understood [5] .  

Results 

Genome-wide Characterization of H3K27me3 Plasticity 

We obtained a ChIPseq dataset containing H3K27me3 in 19 human cell lines from the 
ENCODE consortium [6]. The raw-sequence reads data were normalized and mapped to 
non-overlapping bins of 200bp. The fluctuation of sequence reads can be approximately 
modeled by a Poisson distribution, which has the distinct property that the mean level is 
equal to the variance. This motivated us to use the index of dispersion (IOD) statistic to 
quantify H3K27me3 variability. The Poisson distribution correspond to an IOD value of 1. 
We selected the top 1% of bins with highest IOD values and referred to those as the 
most variable regions (MVR) (Figure 1, green dots), whereas the bottom 1% of bins 
were referred to as the least variable regions (LVR) (Figure 1, red dots).  

To test whether the variation of H3K27me3 was indeed associated with cell-type 
specific gene regulation, we investigated the correlation between the dynamic change of H3K27me3 occupancy and 
the expression levels of the neighboring genes. We found that, for most regions, there is a significant correlation 
between H3K27me3 density and gene expression level. 

Prediction of H3K27me3 Plasticity from Genomic Sequences 

The genome-wide distribution of H3K27me3 is regulated by both sequence dependent and independent mechanisms. 
On one hand, previous studies have identified a number of DNA sequence features associated with H3K27me3, 
including CpG islands [4], transcription factor sequence motifs [7] [8], short RNA hairpins [9], and lincRNA [10] [11] . 
On the other hand, existing H3K27me3 can be recognized by chromatin regulators thereby propagating in a self-
enhancing manner. Previous studies have been focused on a specific cell-type, whereas to what extent the DNA 
sequence regulates the overall variability remains poorly understood. Of note, while the prediction of cell-type 
specific changes requires additional factors than sequence information, which is cell-type independent,  it remains 
possible to predict the overall variability with accuracy as shown below. 

 
Figure 1. Definition of the 
MVR. 



We applied N-score, a computational method previously developed for nucleosome 
positioning prediction [12], to predict the location of MVRs from the underlying 
genomic sequences, using LVRs as negative control.  We evaluated the model 
performance by cross-validation and obtained an accuracy of AUC = 0.82 (Figure 2). We 
then applied our model over running windows across the entire genome, and compared 
the predicted variability with ChIPseq data. The genome-wide correlation with 

experimental data is = 0.28.  

Distal MVRs Are Regulated by Cell-type Specific Transcription Factors 

Next we focused on the MVRs in distal regions, which have recently been found to 
contain many important enhancer elements. We compared with a publicly available 
dataset of genome-wide enhancers in 9 ENCODE cell lines [13], and found that the distal MVRs are highly enriched 
with enhancers present in at least one cell line (p-value < 2.2E-16).  

Compared to proximal MVRs, the distal MVRs tend to have lower mean and variance. Interestingly, the H3K27me3 
density at distal MVRs appear to be bimodal: while the value is comparable to background level in most cell lines, it is 
significantly higher in one or two specific cell-types, suggesting an important role of cell-type specific regulators in 
their recruitment.  

Since the distal MVRs are markedly cell-type specific, we searched for candidate TFs that 
may a role in Polycomb group (PcG) recruitment in cell-type specific manner.  For each 
cell-type, we ranked the MVRs according to the z-score and selected the top ranking ones 
as the cell-type specific subset. We searched for known transcription factor (TF) motifs 
that are over-represented in each cell-type specific MVRs while using the rest as the 
background. For most cell-types, we were able to identify a small number motifs that are 
highly significantly over-represented.   

As an example, we found that the PAX5 motif is highly enriched in the lymphoblastoid 
cell lines (GM12878 and GM06990). Furthermore, the expression level of PAX5 is also 
higher in this cell-type than others, consist with the known role of PAX5 in B-cell 
development. Indeed, a role of Polycomb recruitment of PAX5 has previously been identified.    To test whether PAX5 
may facilitate PcG binding in this cell line, we tested its colocalization with H3K27me3 by using public ChIPseq data. 
We found that PAX5 and H3K27me3 indeed colocalize at these MVRs (Figure 3).  Consistent with a gene silencing role, 
the target gene expressions are lower in these cell lines that the rest.  

A Role of the TAL1 in Regulating H3K27me3 Recruitment in Erythroid Precursors 

Next, we investigated whether the computational strategy discussed above may be useful 
for prediction of novel PcG recruiting factors in less well-characterized systems. In a 
recent study, we have characterized the genome-wide chromatin states in erythroid 
precursors (ProE) using primary human cell lines, and found that enhancer mediated gene 
activities are responsible for developmental-stage selection [14].  Using the same strategy 
as described above, we integrated our H3K27me3 ChIPseq data for ProE together with 
those obtained from ENCODE, and identified a subset of distal MVRs that are specific to 
ProE. 

In order to identify ProE-specific PcG recruiting factors, we searched for enriched TF 
motifs in the ProE-specific distal MVRs. One of the most enriched motifs corresponds to TAL1 (p-value = 5.6E-37). 
This is surprising because TAL1 is a well-characterized activator that is required for erythroid development. Although 
a possible role in repression has recently been suggested [15], a mechanistic understanding is still lacking. Our 
analysis suggests that TAL1 may play a role in PcG recruitment thereby repressing the target genes. We then 
examined the TAL1 ChIPseq data around the distal MVRs, and indeed found significant TAL1 binding signal (Figure 4). 
Furthermore, gene expression data analysis showed that the expression level of the target genes are expressed at a 

 
Figure 2. ROC for prediction 
of MVR locations from DNA 
sequence. 

 
Figure 3. PAX5 is enriched 
in lymphoblastsoid-
specific MVRs.  

 
Figure 4. TAL1 is enriched 
in ProE specific MVRs. 



lower level compared to the overall TAL1 target genes. These results support a role of TAL1 in orchestrating PcG 
recruitment during erythroid development.  

Conclusions 

We have developed a systematic approach to investigate the mechanisms regulating chromatin state variability and 
applied it to H3K27me3.  We found that the MVRs can be well-predicted by the underlying DNA sequences. 
Furthermore, the distal MVRs cannot be explained by GC content but are enriched for cell-type specific TF motifs.  
Using this approach, we found that the erythroid master regulator TAL1, which is commonly known as an activator, 
can also play a role in gene repression by targeted recruitment of Polycomb complexes.  Our approach is generally 
applicable to other epigenetic marks.   
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1 Regulation of gene expression depends on

the rotational positioning

One of the key factors in the regulation of gene expression is binding of
transcription factors to their response elements. This binding is well known
to depend on rotational orientation of the binding sites in the nucleosome
[6, 7, 12, 9, 1].

Typically, the binding occurs if the binding site is exposed. The transcrip-
tion factor binds to the DNA with the highest affinity when the recognition
sites are oriented away from the histone octamer. For example p53 binds
preferentially to the nucleosomes when the minor grooves of the recognition
sequences are oriented outwards [9]. Another example is glucocorticoid re-
ceptor which favors the binding sites positioned in the major grooves facing
out [6]. In both cases the transcription factor binding decreases when rota-
tional positioning of the recognition sites is changed, being abolished when
the sites face the histone octamer [6, 9].

2 Computational mapping of the nucleosomes

The rotational setting can be determined by any of few available techniques,
which allow a single-base resolution mapping of the nucleosomes on DNA
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[3, 11, 2]. We used the DNA bendability matrix derived by [3] to study the
rotational positioning of TATA boxes and splice junctions.

This technique had been tested on the set of nucleosome DNA sequences
experimentally mapped with high accuracy, including the crystallized nu-
cleosome data. The test demonstrated ±1 base fit [3] to the experimental
positions.

3 Rotational positioning of the TATA boxes

For the analysis of the TATA boxes we extracted[5] DNA sequences from
the Eukaryotic Promoter Database [8] and mapped nucleosomes on these
sequenced synchronized around the TATA box.

Our results show that the nucleosome DNA sequence harboring the TATA
box encodes alternative rotational positions for the same piece of DNA. This
may serve for switching the gene activity on and off.

4 Rotational positioning of the splice junc-

tions

When we applied[4] this approach to DNA sequences containing splice junc-
tions from five different species[10], we found the junctions to be preferentially
located within nucleosomes. Moreover, the orientation of guanine residues
at the GT- and AG-ends of introns within the nucleosomes are such that
the guanines are positioned nearest to the surface of histone octamers, 3
and 4 bases upstream from the local DNA pseudo-dyads passing through
minor grooves oriented outwards. Since the guanine residues are the most
vulnerable to spontaneous damage within the cell (primarily, depurination
and oxidation) such positioning of the splice junctions minimizes the damage
that is caused by free radicals and highly reactive metabolites.
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Background 

DNA methylation is an important epigenetic marker associated with the regulation of gene expression in 
eukaryotes. While promoter methylation is relatively well-characterized as a gene silencer in 
vertebrates, the role for intragenic methylation remains unclear. The genome-wide location of 
intragenic DNA methylation was determined in many eukaryotic species [1], along with analyses of 
messenger RNA. A recent study suggests that DNA methylation affects exon recognition and is 
influenced by the GC architecture of the exon and flanking introns [2]. In this study we investigate the 
role of DNA methylation in the exons and their flanking introns based on DNA methylation and 
expression data. 

Results  

Our data consists of 32000 exons with RNA-seq expression and BS-seq methylation data from Human 
Fibroblast cell-line IMR90 [1]. Further we extract four intronic regions of length 200 bp flanking each 
exon representing the middle of upstream intron, the immediate region upstream intron region, 
immediate intron region downstream and the middle of the downstream intron. 

Strikingly we noticed a significant difference in the methylation pattern of intronic regions flanking 
highly methylated exons versus low methylated exons. Specifically, the highly methylated exons (figure 
1A) were found to be significantly more methylated than their intronic surroundings while the low 
methylated exons (figure 1B) showed the opposite pattern, where the flanking introns had higher 
methylation levels.  



 
Figure 1: Methylation levels in exons and flanking introns for high [A] and low [B] methylated exons. 

 

Furthermore, the highly methylated exons were highly expressed while low methylated exons 
were on general weakly expressed. Interestingly, in both top and lowest expressed exons we 
notice two distinct patterns of methylation (we name Peak and Dip), suggesting two alternative 
mechanisms relating intragenic DNA methylation to exon expression. Overall, the different 
methylated patterns were not correlated with either the GC content or the evolutionary 
conservation of the exons and their flanking introns.   

 

Last, we explore the relation between promoter methylation and exon methylation and 
expression.  While we did not detect a linear correlation between exon/intron methylation 
levels and the promoter methylation, we show that highly methylated exons tend to have 
higher promoter methylation and accordingly lower expression.  

 

Conclusions 

Consistent with recent studies [2], this study reinforces that the differential methylation level of 
the exon and its intronic surroundings can dictate exon faith. Specifically we show a positive 
correlation between intragenic methylation and exon expression. Overall our results strongly 
suggest that exon expression is influenced by the local methylation state, independent of the 
overall expression of the gene and the methylation status of its promoter.  
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1 Introduction
While the ability of microorganisms to adapt to specific environmental conditions has been studied
with much detail in the past, specific mechanisms to cope with changing environments only recently
have received increasing attention (Buescher et al., 2012; Schuetz et al., 2012; Wessely et al.,
2011). In two recent studies, work from my group has focused on the identification of specific
regulatory strategies that allow microorganisms to reduce their response time when facing a change
in nutritional conditions (Wessely et al., 2011; Bartl et al., 2013). Being able to quickly adjust
fluxes through metabolic pathways is of central importance in order to reduce lag times in case of
deprivation of an essential nutritional constituent or during major growth-transitions such as the
exit from stationary phase (Geisel et al., 2011; Geisel, 2011; Schuetz et al., 2012).

2 Results
A minimal regulatory strategy
In the first study (Wessely et al., 2011), we investigated the coexpression of enzymes belonging
to the same pathway on the level of the entire metabolism in Escherichia coli. While we found a
large number of subsystems of metabolism in which most pathways showed a strong coexpression
we also identified several subsystems in which pathways appeared not to be co-regulated. In
order to understand how metabolic pathways could be controlled without a consistent regulation
across all enzymes, we used dynamic optimization to identify a regulatory strategy that allows to
precisely control the flux through a metabolic pathway with a minimal amount of transcriptional
regulatory interactions. To this end, we studied a prototypical example pathway comprising five
reactions governed by irreversible Michaelis-Menten-Kinetics that convert a buffered substrate into
a product that is drained with varying dilution rates in the course of the simulation. Using dynamic
optimization we searched for a time-course of the enzymes that maintains the concentration of
the product in a narrow predefined range while minimizing a weighted sum of initial enzyme
concentrations and the amount of regulation. The amount of regulation was measured as the
deviation of enzyme concentrations from their initial value.

The results of the optimization showed that, in case of a low weight of initial enzyme con-
centrations, it is optimal to transcriptionally control a metabolic pathway only in the initial and
terminal step of the pathway. We call this program of regulation ”sparse transcriptional regula-
tion”. With an increasing weight of initial enzyme concentrations, we observed a shift from sparse
transcriptional regulation to the regulation of all enzymes within the pathway, which we called
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”pervasive transcriptional regulation”. To test the predictions of the optimization approach, we
analyzed the pathway-position dependent occurrence of transcriptional regulatory interactions. We
could confirm that within the subsystems of metabolism in which we didn’t find a co-expression of
all enzymes within a pathway, there was a significant increase in the frequency of transcriptional
regulatory interactions at the beginning and end of pathways. Moreover, we observed a sparse
transcriptional regulation in particular for pathways consisting of lowly abundant enzymes.

We explained the optimality of these different programs of pathway activation by a trade-
off between response time and protein cost. A sparse transcriptional regulation of a pathway
allows the organism to quickly adjust the flux through a pathway since only the concentration
of key enzymes needs to be adjusted. However, it entails a high protein cost since enzymes at
intermediate positions within these pathways are expressed constitutively. In contrast, a pervasive
transcriptional regulation entails a slow response time since the concentrations of all enzymes
need to be adjusted but proteins are only produced if they are needed. Thus, depending on the
requirement for a rapid response or a minimization of protein cost, either a sparse or pervasive
transcriptional control is optimal. In consequence, it is optimal to sparsely regulate metabolic
pathways with a low protein cost (e.g. in co-factor synthesis) while it is optimal to pervasively
control metabolic pathways with a high protein cost (e.g. in amino acid biosynthesis). A notable
exception is the pentose phosphate pathway that has a high protein cost but shows a pattern
of sparse transcriptional regulation. This pathway produces reduction equivalents in the form
of NADPH that are required by a large number of other pathways. In consequence, being able
to quickly adjust the flux through the pentose phosphate pathway appears to outweigh the high
protein cost.

Optimal programs of pathway activation
In a second study, we analyzed how a pathway is optimally activated in the light of limitations
of the cellular protein synthesis capacity (Bartl et al., 2013). To this end, we studied a simple
metabolic pathway consisting of four enzymatic steps that convert a buffered substrate into a
product that is limiting for growth. Starting from an initially inactive pathway, we investigated
how the individual enzymes are optimally activated given two constraints on enzyme synthesis to
minimize the time until a resumption of growth. These two constraints are a maximal synthesis
rate of the individual enzymes and the free protein synthesis capacity that puts an upper limit on
the total amount of enzymes that can be synthesized at the same time. While the former constraint
is strongly influenced by the amount of protein that is required, the free protein synthesis capacity
is influenced by the number of free ribosomes. With an increasing enzyme synthesis rate relative to
free protein synthesis capacity, we found a shift from the optimality of a simultaneous activation
of all enzymes over a sequential activation of groups of enzymes to a sequential activation of
individual enzymes within the pathway. Thus, we found, in contrast to previous works, that a
sequential activation of enzymes is only optimal in the case of high protein costs. Moreover, we
found that large differences in the abundance of proteins within a pathway lead to the optimality
of a accelerated activation of highly abundant enzymes while the induction of lowly abundant
enzymes are delayed.

In order to validate the predictions by the optimization approach, we studied the operonic
structure of a large number of metabolic pathways across 550 prokaryotes from the MicroCyc col-
lection of metabolic pathways (Vallenet et al., 2013). The operonic organization of the genes of
a metabolic pathway allowed us to deduce the particular regulatory program that is used for its
control since enzymes within an operon are activated almost concomitantly. Thus, in accordance
with our predictions we expected operon sizes to decrease with increasing protein abundance and
to increase with increasing protein synthesis capacity. Moreover, we expected highly abundant
enzymes within a pathway to be more often coexpressed with earlier enzymes of the same path-
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way while we expect lowly abundant enzymes to be more often coexpressed with later steps of a
metabolic pathway. Of the 99 pathways with sufficient data of all organisms across the MicroCyc
collection, we could confirm for 21 that the dependence between protein abundance and protein
synthesis capacity followed our predictions. Notably we found only two cases in which we found
significant correlations opposite to our predictions. Moreover, we could confirm that highly abun-
dant proteins are more often coexpressed with earlier enzymes of a pathway while lowly abundant
enzymes tend to be coexpressed with later steps.

3 Discussion
These two studies show that with an increasing abundance of proteins within a pathway, the
complexity of the transcriptional regulatory programs used for its control drastically increases.
For pathways with lowly abundant proteins a focused regulation of key steps is optimal, while a
high protein cost entails the optimality of distinct activation times of individual enzymes. Apart
from the identification of optimal programs of pathway control, results from these studies are also
of importance to identify pathways that are differentially expressed between conditions and for our
understanding of the evolution of operons. Relating to the identification of differentially expressed
genes, our results imply that, depending on the transcriptional regulatory program used to control
a metabolic pathway, a differential activity of a metabolic pathway might only be obvious from
changes in the first and/or terminal step. Concerning the evolution of operons, the abundance
of enzymes within a pathway as well as the the capacity of the protein synthetic machinery can
change in the evolutionary history of an organism. Thus, also the optimal operonic organization
of the enzymes of a pathway changes which could partially explain the high evolutionary plasticity
of operons even between closely related species (Price et al., 2006).
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C. Médigue. Microscope–an integrated microbial resource for the curation and comparative
analysis of genomic and metabolic data. Nucleic Acids Res, 41(Database issue):D636–D647, Jan
2013.

F. Wessely, M. Bartl, R. Guthke, P. Li, S. Schuster, and C. Kaleta. Optimal regulatory strategies
for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol, 7:515,
2011.

4



EPSILON: localized networks for eQTL
prioritization

Lieven P.C. Verbeke1, Piet Demeester1, Jan Fostier1, and Kathleen Marchal2,3

1IBCN - iMinds, Ghent University, Belgium, lieven.verbeke@intec.ugent.be
2Department of Microbial and Molecular Systems, KU Leuven, Belgium

3Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium

Abstract

When genomic data is associated with gene expression data, the resulting expression quantitative
trait loci (eQTL) will very likely span multiple genes. eQTL prioritization techniques can be used
to select the most likely causal gene affecting the expression of a target gene from a list of candi-
dates. As an input, these techniques use physical interaction networks that often contain highly
connected genes and unreliable or irrelevant interactions that can interfere with the prioritization
process. We present EPSILON, a framework for eQTL prioritization that mitigates the effect of
highly connected genes and unreliable interactions. We tested the new method on eQTL data
sets derived from yeast data. A physical interaction network was constructed and each eQTL in
each data set was prioritized using the EPSILON approach: first a local network was constructed
using a k-trials shortest path algorithm, followed by the calculation of a network-based similarity
measure. We found that using a local network significantly increased prioritization performance
in terms of predicted knockout pairs when compared to using exactly the same network similar-
ity measures on the global network. EPSILON performed on par or better than two alternative
eQTL prioritization approaches, ITM-Probe and eQED.

1 Introduction

Due to linkage disequilibrium and the spacing of the genetic markers on the genome,
genetic markers represent a region on a chromosome that covers multiple genes rather
than a single gene. The variability in expression of the genes found to be associated
with an eQTL (here referred to as target genes) is most likely caused by a mutation in
a single gene located on the eQTL (the causal gene). Gene prioritization or refinement
methods are needed to distinguish the causal gene from a list of candidate causal genes.

A relatively small number of techniques were developed to tackle the rather spe-
cific eQTL prioritization task. All eQTL prioritization methods have in common that
they use a physical interaction network to define a similarity measure between a tar-
get gene and a set of candidate causal genes. Tu et al. (2006) developed a method
based on random walks in a physical interaction network, an approach later refined
by Suthram et al. (2008), who extended the random walk idea with an electric circuit
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analogy. Voevodski et al. (2009) applied the PageRank algorithm to develop a gene
affinity measure, and Stojmirović and Yu (2012) used the mathematical modeling of
information flow in a network to rank candidate genes.

Stojmirović and Yu (2012) suggest localizing the network, i.e. excluding distant
genes from the network that connects an origin (the target gene) with a set of destina-
tions (the candidate causal genes), prior to analysis in order to better reflect the biolog-
ical context. Otherwise, results of e.g. gene prioritization will be highly dependent on
the node degree of the genes in the network. Simply removing genes from the network
with a node degree exceeding an arbitrary threshold, or heuristically downweighting
the importance of relations based on the number of connections, risks removing useful
genes or important relations (Zotenko et al., 2008). To handle both localization and
prioritization simultaneously, we present EPSILON.

2 EPSILON framework

The EPSILON method contains two steps, which are applied to each association found:
(1) construct, from an existing global interaction network, a local sub-network that
connects the candidate causal genes covered by an eQTL with the target gene and
(2) calculate a similarity measure that expresses the functional similarity between the
target gene and a candidate causal gene. As input, the results of an eQTL association
analysis are used.

To restrict the network around a set of candidate causal genes and a target gene, a
shortest/cheapest path approach is applied. All interactions are assigned a cost, and an
optimal path from each candidate to the target was found using the Dijkstra algorithm.
All genes and interactions that were found on such a shortest path were included in
the sub-network. Furthermore, it was investigated if enlarging this neighborhood could
improve the prioritization results. This was achieved by k times considering if an
alternative shortest path exists, that is different from any previously found path.

Once the local network connecting all candidate causal genes with the target gene
is constructed, the EPSILON framework requires the calculation of a network sim-
ilarity measure between the target gene and all candidates to assess their functional
relatedness. In principle, any network-based similarity measure could be integrated.
Several authors (e.g. Tu et al. (2006), Suthram et al. (2008), Shih and Parthasarathy
(2012)) propose a random walk (RW) approach, in which a random walk is initiated a
very high number of times from a candidate causal gene, and it is measured how many
times a random walker is found in the target gene.

Next to integrating random walks in EPSILON, we investigated kernels calculated
on graph nodes as an alternative similarity measure. These kernels are an attractive
tool for uncovering relations in large networks (Fouss et al., 2006). In this study, we
evaluated two well-known kernels, the Regularized Commute-Time (RCT) kernel and
the Laplacian Exponential Diffusion (LED) kernel.
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3 Results and Discussion

We evaluated EPSILON, a k-trials shortest path network construction method com-
bined with random walk and kernel-based similarity measures, using a gold standard
data set derived from a yeast knockout compendium. We applied three commonly used
association techniques to the SNP and expression data (Saccharomyces cerevisiae) of
Brem and Kruglyak (2005): non-parametric regression, mixed models and elastic net
regression. An interaction network was constructed using public databases, contain-
ing protein-protein interactions, transcription factors with targets and phosphorylation
interactions.

We were able to show that our approach, outperformed random assignment and
a shortest path reference method. More interestingly, the global network analogues
of the network similarity measures too were outperformed significantly (p < 10−5),
clearly showing the added value of using local over global networks. We assume that
constraining the global network to a local neighborhood around the target gene and
all candidate causal genes is effectively reducing the disturbing impact of hubs and
promiscuous genes. EPSILON was compared to two other methods, ITM Probe and
eQED. We found that EPSILON performed as well or better than ITM Probe. EP-
SILON clearly outperformed eQED, be it using a reduced network because eQED
could not deal with the phosphorylation interactions present in the global network.
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Background 

Eukaryotic transcription is intricately regulated at multiple levels, including epigenomic modifications, 

chromatin reorganization, and sequence-specific binding of TF to either proximal promoter regions or to 

distal enhancer/repressor regions of a gene [1]. Distal enhancers, which can regulate their target genes 

from long distances -- the most extreme case being the Shh gene’s enhancer at ~1Mb away -- are 

especially important in regulating critical developmental and tissue-specific genes[2].  Recent advances 

in sequencing technologies have revealed putative distal enhancers based on various epigenomic marks, 

notably P300 binding [3]. Functionally linked genes tend to be co-expressed and are presumed to be co-

regulated [4]. Gene networks based on co-expression patterns of gene pairs across multiple conditions 

and/or cell types reveal intricate organization of genes into pathways and functional groups [5]. Similar 

to functionally related genes, functionally related enhancers, i.e., those regulating functionally related 

genes, share TF binding sites and are likely to have spatio-temporal coordinated activity [6]. A network-

level analysis of coordinated activities of distal enhancers has not been reported and such an analysis is 

likely to reveal higher order organization of a global transcriptional regulatory network mediated by 

distal enhancers. Analogous to using expression level to quantify transcriptional activity of a gene, DHS 

of an enhancer region has been proposed as a proxy for its condition-specific regulatory activity [7]. The 

ENCODE project has produced whole genome DHS profiles across numerous human cell types [8]. 

Analogous to using cross-condition expression correlation to infer gene networks, cross-condition DHS 

correlation can be used to infer enhancer networks. Using ~100K P300-bound regions as candidate 

enhancers, we have identified their correlated activity based on their DHS profiles across 72 human cell 

types, and followed with investigations of mechanisms and functional consequences of the correlated 

enhancer activity.  

Methods Highlight 

1. P300 bound regions in 4 cell types – HepG2, GM12878, H1-HESC and SK-N-SH_RA – were 

used as candidate enhancer regions, yielding 98,353 enhancers with average length of 500 bps;  

2. We obtained DHS status (open or closed) for 72 tissue types in ENCODE yielding a 98,353 x 72 

binary matrix. In order to minimize dependencies, tissues were clustered into 37 clusters yielding 

a 98,353 x 37 binary matrix. 

3. Correlation between the activity of two enhancers was quantified using Mutual Information. 

4. We controlled for cell type-specific DHS autocorrelation to detect significantly correlated 

enhancer pairs (Figure 1). 
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Figure 1. Generating the synthetic 

enhancer data to account for 

autocorrelation. (A) Starting with a 

large set of random genomic regions 

and their DHS profiles across 37 cell 

types, we estimate, for each cell type 

separately, the conditional probability 

of observing DHS at a location Y’ 

given the DHS status at another 

location X at distance d from X. (B) 

Given a pair of enhancer DHS 

profiles (X,Y), we generate a 

synthetic pair of DHS profiles as 

(X,Y’) where Y’ is randomly 

generated from X and the conditional 

probabilities estimated in (A). . Blue: 

DHS=1 (open chromatin); white: 

DHS = 0 (closed chromatin) 

Results Highlight 

1. We exhaustively assessed ~35 million intra-chromosomal enhancer pairs separated by less than 

12.5 Mb. Despite distance bin-specific FDR control, the fraction of enhancers that are 

significantly correlated declines with increasing distance (Figure 2). Across all bins, at an FDR 

of 1% we detect a total of 313,757 significant enhancer pairs, covering 32% of enhancers. 

  

Figure 2.  Chromatin states of a large number of 

enhancer pairs are significantly correlated. The plot 

shows the fraction of pairs with significant mutual 

information (MI) as a function of inter-enhancer 

distance. The plot is based on significant pairs after 

greedily removing pairs inducing transitive 

relationships.  

 

2. Strong enhancers, those with higher expression levels of the nearest gene, tend to be correlated 

with fewer enhancers than weak enhancers but preferentially correlate with other strong 

enhancers, while weak enhancers are correlated with a greater number of enhancers and 

preferentially correlate with other weak enhancers. 

3. Correlated enhancers tend to share common TF binding motifs. We identified 52 TF motifs 

significantly co-occurring in correlated enhancer pairs relative to uncorrelated enhancers. Using 

presence of shared motifs as features, correlated enhancers can be distinguished from 

uncorrelated ones with 73% accuracy.  Several chromatin modification enzymes preferentially 

interact with these 52 TFs.  

4. Using the gene closest to an enhancer as putative target, we found that the targets of correlated 

enhancers have correlated expression and are involved in common biological processes.  
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5. Correlated enhancers tend to be spatially close (although not highly significantly so) based on 

Hi-C data. 

6. We constructed enhancer networks based on correlated activity and shared TF motifs, and found 

significant enrichment of specific biological processes among the putative gene targets of the 

enhancer modules (Figure 3). 

Figure 3: Tissue activity 

profile of an enhancer 

cluster and the 

corresponding target 

genes. Left: The tissue-

specific DHS activity for 

179 coordinately 

activated enhancers 

across 15 cell types. 

Right: Corresponding 

expression of the 98 

target genes. The GO 

memberships for enriched 

terms each gene are 

shown above the heat 

plots.  

Conclusions 

Overall, our analysis suggests that functionally linked genes may be co-regulated by distal enhancers 

whose activities are regulated by common sets of TFs and mediated by both 3D chromatin structure as 

well as chromatin modification enzymes.  

References 

1. White, R.J., Transcription by RNA polymerase III: more complex than we thought. Nat Rev 

Genet, 2011. 12(7): p. 459-63. 

2. Lettice, L.A., et al., A long-range Shh enhancer regulates expression in the developing limb and 

fin and is associated with preaxial polydactyly. Hum Mol Genet, 2003. 12(14): p. 1725-35. 

3. Visel, A., et al., ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009. 

457(7231): p. 854-8. 

4. Stuart, J.M., et al., A gene-coexpression network for global discovery of conserved genetic 

modules. Science, 2003. 302(5643): p. 249-55. 

5. Dewey, F.E., et al., Gene coexpression network topology of cardiac development, hypertrophy, 

and failure. Circ Cardiovasc Genet, 2011. 4(1): p. 26-35. 

6. Narlikar, L., et al., Genome-wide discovery of human heart enhancers. Genome Res, 2010. 20(3): 

p. 381-92. 

7. Pique-Regi, R., et al., Accurate inference of transcription factor binding from DNA sequence and 

chromatin accessibility data. Genome Res, 2011. 21(3): p. 447-55. 

8. Dunham, I., et al., An integrated encyclopedia of DNA elements in the human genome. Nature, 

2012. 489(7414): p. 57-74.  



Posters 
 

1 Anna Lyubetskaya, Matthew 

Peterson, James Galagan 

Reconstructing the regulatory network of TB: 

transcription factor binding distribution and properties 

(see oral presentation for abstract) 

2 Meromit Singer, Idit Kosti, Lior 

Pachter, Yael Mandel-

Gutfreund 

Does intragenic DNA methylation determine 

differential exon expression? 

(see oral presentation for abstract) 

3 Morgane Thomas-Chollier, 

Matthieu Defrance, Alejandra 

Medina-Rivera, Olivier Sand, 

Pierre Vincens, Carl Herrman, 

Sebastiaan H. Meijsing, Denis 

Thieffry, Jacques Van Helden 

Deciphering genome-wide cis-regulation with RSAT: 

application to the glucocorticoid receptor 

4 Rémy Nicolle, Mohamed Elati, 

Jennifer Southgate, and 

François Radvanyi 

Modelling normal cells identifies master regulators in 

cancer 

5 Joseph Wu, Beth Bragdon, 

Louis Gerstenfeld, Mayetri 

Gupta 

Bayesian inference of gene regulatory networks from 

factorial time-course experiments with applications to 

bone fracture healing 

6 Marcin P. Joachimiak, Cathy 

Tuglus, Mark van der Laan, 

Adam P. Arkin 

Deep surveys of biological modules: K-biclustering 

gene expression and phenotype data 

7 Alastair Kilpatrick, Stuart 

Aitken 

Stochastic algorithms for motif discovery: a 

comparison of sampling strategies 

8 Michael Dabrowski, Norbert 

Dojer, Izabella Krystkowiak, 

Bartek Wilczynski, Bozena 

Kaminska 

Comparison of Jaspar, Transfac and Genomatix motif 

libraries on chip-seq data for 44 transcription factors 

9 Izabella Krystkowiak, Michael 

Dabrowski 

Integrating Nencki Genomics webservices via 

Taverna workbench 

10 Limor Leibovich, Inbal Paz, 

Zohar Yakhini and Yael 

Mandel-Gutfreund 

DRIMust: a web server for discovering rank 

imbalanced motifs using suffix trees 

11 Jieun Jeong, Yuichi Nishi, 

Andrew P. McMahon 

Polycomb repression and RNA polymerase in neural 

tube development 

12 Alena van Bömmel, Mike Love, 

Ho-Ryun Chung, Martin 

Vingron 

Detection of co-regulating transcription factors in 34 

human cell types using predicted DNA-binding 

affinity on DNase hypersensitive sites 

13 Marleen Claeys, Kathleen 

Marchal 

Regulatory motif detection using different types of 

evolutionary conservation information 

14 Joshua Welch, Jan Prins Investigating the role of transcribed pseudogenes in 

breast cancer 

15 Yaron Orenstein, Ron Shamir Inferring binding site motifs from high-throughput in 

vitro data 

16 Lex Overmars, Sacha A. F. T. 

van Hijum, Roland J. Siezen, 

Christof Francke 

REPs, genetic insulators that enable differential 

regulation of gene expression in bacteria 



17 Jocelyn Brayet, Remy Nicolle, 

Mohamed Elati 

MiRnaBoost: Multi-view AdaBoost for microRNA 

target prediction 

18 Stefan Naulaerts, Wim Vanden 

Berghe, Kris Laukens 

Integrative biological itemset mining in cancer 

research 

19 Galip Gurkan Yardimci, 

Gregory E. Crawford, Uwe 

Ohler 

Prediction of genome-wide in vivo transcription factor 

binding using factor-specific DNase footprinting 

models 

 

 



 

 

Deciphering genome-wide cis-regulation with RSAT: application to the 
glucocorticoid receptor 

Morgane THOMAS-CHOLLIER1, Matthieu DEFRANCE2, Alejandra MEDINA-RIVERA3, Olivier SAND4,  
Pierre VINCENS1, Carl HERRMAN5, Sebastiaan H. MEIJSING6, Denis THIEFFRY1 and Jacques VAN 

HELDEN5 

1 Computational systems biology, Institute of Biology of ENS (IBENS), Paris, France 
mthomas@biologie.ens.fr , thieffry@ens.fr , Pierre.Vincens@ens.fr 
2 Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Belgium  

defrance@bigre.ulb.ac.be  
3 SickKids Research Institute, 101 College St. East Tower | Suite 15-306, Toronto, Ontario, Canada 

alejandra.medina@sickkids.ca 
4 Génomique et maladies métaboliques, CNRS-UMR8199, Institut de Biologie de Lille, France 

olivier.sand@good.ibl.fr 
5 Technological Advances for Genomics and Clinics (TAGC), INSERM U928 & Aix-Marseilles University, France 

jacques.VAN-HELDEN@univ-amu.fr , carl.herrmann@univ-amu.fr 
6 Max Planck Institute for Molecular Genetics, Berlin, Germany 

meijsing@molgen.mpg.de 

 
Overview of RSAT 
 

The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/ and mirrors) is a software suite 
that integrates a large collection of modular tools for the detection of cis-regulatory elements in genomic 
sequences [1-3]. The web site has been running without interruption since 1998, and the suite has been 
continuously developed to accommodate novel types of data and experimental approaches over the years [2-
4]. The suite includes programs for sequence retrieval, motif discovery, phylogenetic footprint detection, 
sequence scanning with regular expressions or position-specific scoring matrices, motif quality assessment 
and comparison, visualization and conversion utilities, along with a series of tools for random model 
generation and statistical evaluation. Genomes are regularly updated from various genome repositories 
(NCBI, Ensembl, UCSC browser) and the website currently supports 2517 genomes (March 2013). 

RSAT enables genome-wide analysis of cis-regulatory elements with different types of input data: (i) 
groups of co-expressed genes produced by transcriptomic experiments, (ii) phylogenetically conserved 
regions and (iii) high-throughput binding data such as ChIP-seq. 

In addition to motif discovery and pattern-matching approaches, the suite already provides various tools 
to analyse transcription factor binding motifs represented as matrices, including motif comparisons [3] and 
evaluation of matrix quality [5]. We are currently developing a motif clustering algorithm to ease the 
analysis of overlapping motifs (newly discovered or reported in databases) and assess potential motif 
diversity for a given transcription factor, in the context of motifs for cofactors.  

The RSAT web server offers an intuitive interface, where each program can be accessed either separately 
or connected to the other tools. In addition, many tools are available as SOAP/WSDL web services, enabling 
their integration in programmatic workflows. Programs are documented with manual pages, while ‘demo’ 
buttons propose typical test cases. In addition, web tutorials and a series of published protocols help the users 
to master the different functionalities of RSAT [6-9], providing step-by-step guidelines about alternative 
options, as well as regarding the interpretation of results.  

 

Cis-regulation analysis from high-throughput binding data 
 

Several efficient and complementary motif discovery algorithms can predict transcription factor binding 
motifs from groups of co-expressed genes. Although these methods yield good results in yeast and bacteria 



 

 

genomes, they are not suitable for vertebrates, due to the larger size and heterogeneity of non coding 
genomic sequences. The same algorithms nevertheless proved very efficient to analyse high-throughput 
transcription factor binding data, where the signal to noise ratio is higher. The workflow peak-motifs [10] 
was therefore developed to process large collections of peak sequences obtained from ChIP-seq or related 
technologies, to predict transcription factor binding motifs.  

Most existing tools present limitations on sequence size, and they typically restrict motif discovery to a 
few hundred peaks, or to the central-most part of the peaks. To interpret genome-wide location data, there is 
a crucial need for time- and memory-efficient algorithms, interfaced as user-accessible tools to extract 
relevant information from high-throughput sequencing data. 

Our workflow peak-motifs takes as input a set of peak sequences of interest, discovers key motifs, 
compares them with transcription factor binding motifs from various databases, predicts the location of 
binding sites within the peaks and exports them in a format suitable for visualization in the UCSC Genome 
Browser. Notably, all these steps, including motif discovery, are performed on the full-size sets of peak 
sequences, without restrictions on peak number or width. 
 

The motif discovery step relies on a combination of algorithms that use complementary criteria to detect 
exceptional words (oligonucleotides and spaced motifs): global over-representation of oligonucleotides 
(oligo-analysis) or spaced pairs (dyad-analysis), heterogeneous positional distribution (position-analysis) 
and local over-representation (local-word-analysis).  
The motif comparison step is performed by compare-matrices [3], which supports a wide range of scoring 
metrics and displays the results as multiple alignments of logos, enabling to grasp the similarities between a 
discovered motif and several known motifs. This feature is particularly valuable to reveal adjacent fragments 
of the discovered motif showing similarities with two distinct known motifs, suggesting a bipartite motif for 
two factors. 
Sequences are scanned with the discovered motifs to locate binding sites, and their positioning within peaks 
is analyzed (coverage, positional distribution along peaks). 
Peak-motifs generates an HTML report summarizing the main results and giving access to each separate 
result file. The report page includes links, allowing users to upload input peaks and predicted sites to the 
UCSC Genome Browser in order to visualize them in their genomic context. 

 
We assessed the time efficiency of peak-motifs by analyzing data sets of increasing sizes (from 100 to 1 

000 000 peaks of 100 bp each), with total sequence sizes ranging from 10 kb to 100 Mb. The computing time 
of the motif discovery algorithms integrated in peak-motifs increases linearly with sequence size and 
outperforms all the other existing motif discovery tools used in our comparison [10]. Data sets of several tens 
of megabytes are processed in a few minutes on a personal computer (the most efficient tool, oligo-analysis, 
treats 100Mb in 3min). This linear time response enables peak-motifs to scale up efficiently with sequence 
size, and allows us to provide an easy access via a web interface, without any data size restriction. 

 
Current developments aim at extending peak-motifs to support other high-throughput data, including 

chromatin marks or DNaseI. 

 

Condition-specific binding of GR 
 
We extensively used RSAT to study the binding of the glucocorticoid receptor (GR), with the aim to 

better understand its specificity of action in various cell types. Glucocorticoids are steroid hormones that 
bind to its nuclear receptor (GR) that in turn recognizes specific DNA sequences to regulate the expression 
of target genes.  The target genes of GR are highly cell-type specific and they mediate the various 
physiological effects of GR on processes including glucose metabolism (hepatocytes), anti-inflamatory 
effects (leucocytes) and increase of bone resorption, [11]. In particular, the anti-inflammatory effect of 
glucocorticoids are of enormous therapeutic importance and are widely used to treat a broad range of 
immune-related diseases e.g. allergies, asthma and arthritis. Unfortunately however, the beneficial 
therapeutical effects of glucocorticoids are accompanied by several side effects including muscle wasting, 



 

 

metabolic changes and osteoporosis. The desired as well as the side effects of glucocorticoids are mediated 
by specific target genes that are regulated in a tissue specific manner. To better understand how 
glucocorticoids elicit highly tissue specific effects we used ChIP-seq to compare the genomic binding profile 
of GR in cell lines derived from B cells, bone and lung. 

We made several observations when we compared the genomic binding profile of GR in these cell lines: 
first, there is little overlap of the bound regions, suggesting that genomic binding is highly cell-type specific. 
Moreover, the fraction of promoter-proximal GR binding differs greatly between cell-types. Our motif 
analysis suggests that GR recognizes similar binding sites (imperfect palindromes), but that the presence of 
sequence motifs for potential cofactors varies between cell lines. Preliminary experimental validation 
showed that genomic regions harbouring such cell-type specific cofactors could recapitulate cell-type 
specific regulation by GR arguing for their importance in directing cell-type specific GR actions. 

Furthermore, we compared the binding specificity of two isoforms of GR that differ by a single amino 
acid which is a consequence of an alternative splice event.  We found that the binding motif of these 
isoforms, GRalpha and GRgamma, differed slightly and functional luciferase reporter studies confirmed the 
importance of these differences in mediating isoform-specific transcriptional regulation. We do not know the 
exact reason for the difference between the binding motifs for GR alpha and gamma, but biochemical and 
structural studies indicated a role for isoform specific DNA binding affinity and conformation.  

Current work on the GR involves the analysis of ChIP-exo datasets, with the goal to obtain more precise 
information on the mechanisms by which GR recognizes its binding sites. 
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Motivation

Tumor cells display many functions possessed by their normal counterparts. Their ability to migrate, to prolifer-
ate, to attract new vessels and to exist in various differentiation states are properties also found in normal tissue
during wound healing. Following tissue injury normal cells can operate these processes in a tightly regulated
and coordinated manner leading to the healing of the wound.

We propose an original systems biology approach to identify and analyse the regulatory networks found in
the normal states to then assess whether networks of the normal regenerative process are specifically maintained
or altered in the tumor state. This strategy was applied to bladder cancer, a cancer derived from the bladder
urothelium, because normal bladder urothelium can be grown in culture at various different stages of proliferation
and differentiation thereby mimicking wound healing.

Constructing the network of normal proliferation and differentiation

Gene expression data of primary Normal Human Urothelium (NHU) non cancerous primary cell cultures in
various states of differentiation and proliferation was considered as an in vitro model of wound healing and used
to infer a large regulatory network. We applied LICORN[1], a data mining algorithm introduced by our team
that infers the targets of transcription factors from genome wide expression data. LICORN was shown to be
suitable for cooperative regulation and to scale up to the complexity of mammalian transcriptional networks.
LICORN is able to find the set of Transciption Factors that cooperatively regulate the expression of a given
gene. Furthermore, LICORN was previously applied[2] in yeast to infer a large regulatory network from gene
expression data. The authors showed that the clusters of genes extracted from the inferred regulatory network
had a higher functional enrichment than clusters based solely on gene expression.

Additionally to expression based information, the inferred normal regulatory network, comprising approx-
imately 5000 genes and 400 co-regulators, was enriched with systematic promoter sequence analysis of known
transcription factor binding sites model, public ChIP-chip and ChIP-Seq data as well as Protein Protein inter-
actions between co-regulators.

Note that the rest of our approach is not dependent on the network inference method. Aside from the co-
regulation information inferred by LICORN, any method able to infer large-scale regulatory networks such as
ARACNE[3] or GENIE3[4] could be used.

Measuring context specific regulation activity

The concept of using the knowledge over the network structure was shown to be successful at identifying key
regulators of specific phenotypes and processes [5, 6]. However, we were interested in a data transformation
approach in which neither a predefined gene-signature nor sample classification was needed to identify central
regulators.

In order to identify key regulators and to quantify their impact on their regulatory programs, we propose to
measure the influence of regulator genes on their targets in a given sample. The idea is to be able to quantify
the extent to which a Master Regulator (MR) is active on it’s target genes in a given sample or set of samples.
The measure is based on the divergence between the expression of the set of activated and repressed target
genes of a given regulator in a given sample. The basic idea is that if a set of genes is effectively activated



and another repressed by the same MR, and that this MR is active, the activated set of genes should be over
expressed and the repressed set should be under expressed. Therefore the more a MR is active on given sets of
targets (activated and repressed) the greater the distance between these sets will be. Measuring this divergence
will give an idea on the activity of a MR in a given sample, or set of samples, and more importantly on the
pertinence of the structure of the network.

Interestingly, when measured for each regulator in each sample, the measure of regulatory influence produces
a data set with the same number of samples but a reduced number of features representing the master regulators
activity. Therefore, we proposed[7] to use this measure in the context of classification and feature extraction.
We showed that the transformation of the data through the regulatory activity greatly improves the stability
and robustness of models trained in different datasets.

Regulatory influences underline function of Master Regulators in normal and cancer cells

The regulatory network inferred from the NHU data pointed out several previously described regulator of normal
urothelial differentiation and their validated gene targets. Alongside to these known MR, the computation of the
influence characterized new MR as well as their involvement in normal urothelial differentiation, proliferation
and growth arrest.

In an identical way the influence of the normal regulators was measured in 3 cohorts of 60, 120 and 180
bladder cancer transcriptomes (respectively from Stransky et. al. [8], the TCGA consortium and a private
unpublished data set). In order to estimate to what extent the normal regulation of growth is conserved in
tumor cells, the global influence (defined as the sum of squared influence in all samples for all MR) of the
normal network was compared to the influence of 1000 randomly generated networks with similar topology
(each regulator with the same number of target genes). The global influences were compared and shows that
the normal network is significantly conserved, more influent, than any random network (150 times the standard
deviation above the mean).

An analysis of the influence of normal regulators in bladder cancers pointed out a major loss of function of
Master Regulators of urothelial differentiation. This loss of differentiation was also observed in the co-regulatory
network in which known and novel regulators of normal differentiation form a dense network of cooperative
regulators and are virtually all lost in most bladder tumors. Additionally to these results, several MR show
the same activity profile in some bladder tumors than in the proliferating NHUs suggesting that the regulation
driving normal proliferation is maintained during tumorigenesis.
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Abstract

Bone fracture healing recapitulates many aspects of embryonic skeletal develop-

ment. Besides age, metabolic conditions, and the presence of pharmacological agents,

gender and genetic predisposition may affect the cellular environment and skeletal

repair processes. Also, the fracture repair process takes place in stages over a long

period of time with different networks of genes involved at different times. To im-

prove the quality and speed of the repair process, it is important to understand how the

genes involved behave under critical experimental conditions and longitudinally over

time. As experimental designs become more complex such as in factorial time-course

microarray studies, it becomes more challenging to answer questions of interest, such

as how two experimental factors interact in their effects on gene expression over time.

One may want to detect possible interactions between an experimental treatment and

another factor while concurrently grouping genes showing similar effects into clusters.

Only a few existing methods are able to simultaneously infer differential expression

and take gene clustering into account. Motivated by the need to fully model a facto-

rial time-course gene expression experiment, we propose a novel Bayesian statistical

approach that can simultaneously estimate the longitudinal model signals under a fac-

torial design and assign genes into biologically meaningful clusters, using fast hybrid

MCMC algorithms. A unique feature of our framework is that all information about

gene expression can be interpreted at all three levels– longitudinal, factorial, and tran-

scriptional.
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Abstract:  
Experimental efforts are targeting genomes, cells, and populations of organisms with a 

widening array of high throughput experimental techniques. In light of this bountiful data it is 
advantageous to: a) simultaneously query multiple data types to uncover new biological 
associations, b) jointly determine confidence across data types, and c) systematically form 
hypothesis from multiple lines of evidence. We have developed an accurate and sensitive 
biclustering algorithm, Massive Associative K-biclustering (MAK), for the discovery of 
biological data associations across multiple data types. The algorithm framework models data 
archetypes, such as object-by-value (e.g. gene expression), object-by-feature (e.g. phylogenetic 
profiles), and object-by-object (e.g. protein interactions). The objects can be for example genes, 
proteins, regulators, orthologous sequence families, or experiments. For each data archetype we 
designed statistical criteria to detect the expected association patterns. True associations in 
biological data are mostly unknown, therefore to evaluate biclustering methods we design a 
simulated dataset modeled on yeast gene expression data, with implanted associations forming 
known patterns. Using this and other evaluations we find that MAK compares favorably to other 
biclustering methods.  

We applied the MAK algorithm to reconstruction of a condition-specific transcriptional 
co-expression network for Saccharomyces cerevisiae using combinations of gene expression, 
experimentally determined transcription factor binding, protein interaction, and phylogenetic 
profile data. Using gene expression data alone we find more biclusters with higher enrichment for 
known transcription factor regulation and functional terms than other biclustering methods. 
Pooling biclusters independently discovered using different data type combinations leads to an 
improvement in most evaluation measures. We also used the discovered biclusters to generate an 
annotated co-expressed module network, integrating the MAK biclusters, with human-curated 
groups of experimental conditions, human-curated functional terms, categories, and cellular 
localization, known regulation, and known sequence motifs. We were able to assign putative 
functions and regulation to a number of novel biclusters. 
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TFBS motifs are short DNA sequence patterns that have important roles in gene transcription and reg-
ulation. Discovery of these sequences remains an important task in the wider challenge of understanding
the mechanisms of gene expression; consequently, there is much continuing interest in developing algo-
rithms to computationally discover TFBS motifs.

The EM algorithm [4] is the basis of a number of algorithms for motif discovery (most notably the
popular MEME algorithm [1]). However, it suffers from several well-known limitations: it is strongly
dependent on its initial position and can converge to a saddle point of the likelihood function rather than
a local maximum. A stochastic version of the EM algorithm has been shown to alleviate these limitations
in theory [3] and has been implemented in a motif discovery context by Bi (using the OOPS, or One
Occurrence Per Sequence model) as the SEAM algorithm [2]. In this study we compare a Metropolis
independence sampler with the roulette wheel selection used in SEAM in order to evaluate the potential
performance benefits and computational cost: the motivation for this study is to determine if it is possible
to reduce the running time of the algorithm by designing a strategy where samples could be drawn from
an input sequence without having to evaluate the probability of each possible motif start site being an
occurrence of the motif. The correctness of the recovered motifs is assessed using the standard measures
of site-level sensitivity (sSn) and positive predictive value (sPPV ).

Background

The idea underlying SEAM is to replace the computation and maximisation of the expected complete-
data log likelihood function by the much simpler estimation of the posterior distribution for each input
sequence, simulating a ‘pseudo-sample’ from this distribution and updating the model parameters based
on the pseudo-complete samples [2]. This method is equivalent to the weighted ‘roulette wheel selection’
(sometimes known as ‘fitness proportionate selection’) method in genetic algorithms. Having sampled
each input sequence, a proposal model is constructed from the samples and the current model updated
to the proposal model if the Metropolis ratio is satisfied [2].

Using this method, the probability that a given position j in input sequence i is a motif occurrence
(Zi,j) must be enumerated for every position in i at every EM iteration in order to calculate the density.
This requires considerable computation and may be inefficient, especially at later EM iterations when the
majority of Zi,j values are expected to be near zero. This motivates the current study: is it possible to
sample from an input sequence without having to evaluate Zi,j at every position? One potential solution
is to use Markov Chain Monte Carlo (MCMC) to sample from our input sequence.

Method and Results

The simplest MCMC strategy (Metropolis algorithm) uses an independence sampler as the proposal dis-
tribution; this simplifies the calculation of the acceptance probability. Clearly, this method is only an
improvement on the roulette wheel selection method if the cost of drawing k samples is substantially
smaller than the cost of evaluating Zi,j at every possible motif start site. It is well known that the
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Metropolis algorithm with independence sampler can be shown to converge to a target distribution when
this distribution is well-behaved. While analysis of the posterior distribution for a given input sequence
shows that this distribution is not well-behaved at all, we have shown that this general result holds true
in the context of motif discovery for large k.

A modified version of SEAM was implemented, replacing the roulette wheel selection method with the
Metropolis independence sampler for each input sequence. The Metropolis independence sampler was im-
plemented within SEAM, replacing the roulette wheel selection method for each input sequence. Overall
performance was assessed by running the modified SEAM algorithm with 1,000 random seeds, choosing
the best result based on the motif energy function provided by Bi and calculating the site-level sensitivity
(sSn) and site-level positive predictive value (sPPV ) for the corresponding motif model. Bi’s motif
energy function is related to the sequence binding or structural configuration free energy, widely used in
motif discovery algorithms [2].

Both the original roulette wheel and modified SEAM algorithms were tested on a small collection
of datasets containing previously characterised E. coli TFBS motifs extracted from the RegulonDB
database. Initial tests with k = 1, 000 (around five times the number of possible motif start sites)
returned similar results to the roulette wheel selection method, showing the Metropolis independence
sampler converging to the target distribution. In some cases, the maximum value of the motif energy
function was increased when using the independence sampler (i.e. the output motif model was stronger),
giving a corresponding improvement in sSn and sPPV . While this improvement is encouraging, the main
disadvantage of this result is that drawing 1,000 samples from each input sequence takes substantially
longer than simply enumerating every position and drawing a sample from the roulette wheel. It is clear
that the next step is to investigate whether this trend continues when k is decreased.

In tests on a single input sequence, the Metropolis independence sampler with smaller k shows relatively
poor convergence. However, it may still give reasonable results when applied to the SEAM algorithm, as
SEAM takes a sample from each input sequence and takes the consensus of all samples in order to form
a new proposal model. It follows that even if the chosen sample for a single input sequence is relatively
poor, this may be alleviated by the chosen samples from other input sequences. It is possible that the
independence sampler still allows the stochastic EM algorithm at the heart of SEAM to converge, albeit
at a slower rate than before.

Further tests were carried out with k = 200 (i.e. around the number of possible motif start sites)
and k = 20 (i.e. around 0.1 of the number of possible motif start sites). In addition, the number of EM
iterations was varied in order to determine whether increasing this would improve situations with fewer
MC samples. The results of these tests show that, overall, as k is reduced, the maximum value of the
motif energy function decreases (i.e. the output motif model becomes weaker), often reducing sSn and
sPPV as the number of true positive site predictions decreases.

Table 1 illustrates some of the results of the comparison of sampling strategies. In the case of the
Ada motif, the Metropolis independence sampler improves the sSn and sPPV of a motif which was not
discovered well by the roulette wheel sampling method. This test also illustrates a slight increase in motif
energy; this increase is also noted in other datasets. In the case of the MetR motif, while the sSn and
sPPV results for the Metropolis method with large k match those for the roulette wheel sampling method,
this performance decreases as k is decreased. In both cases, as k decreases, the maximum motif energy
also decreases. Our results also show that for k greater than the number of possible motif start sites,
increasing the number of EM iterations may slightly increase the motif energy of the result. However,
for small k, the overall result is poor and increasing the number of EM iterations makes little difference
to the maximum motif energy (there is very little improvement over randomly choosing motif positions
within the dataset). While increasing the number of EM iterations may lead to a small improvement in
the mean motif energy over 1,000 random seeds, this improvement is not enough to offset the effect of
reducing k.

Conclusions

Although the Metropolis algorithm with independence sampler is a relatively simple sampling strategy,
this approach is shown to give surprisingly good recovery of motifs based on site-level sensitivity and
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Motif Ada MetR
Method Roulette Metropolis Roulette Metropolis

MC samples - 1000 200 20 - 1000 200 20
EM iterations - 500 1500 2000 - 500 1500 2000

sSn 0.00 0.25 0.25 0.25 0.71 0.71 0.14 0.00
sPPV 0.00 0.25 0.25 0.25 0.71 0.71 0.14 0.00

Motif energy -24.03 -23.17 -30.02 -45.80 -43.94 -47.52 -72.23 -84.72

Table 1: Results of sampling strategy comparison for two E. coli TFBS motifs.

positive predictive value. Implementing this approach and using large numbers of Monte Carlo samples
is also shown to often return stronger motif models, based on Bi’s motif energy function. We note the
high computational cost of drawing large numbers of samples using the independence sampler, how-
ever its performance in this study indicates the potential in exploring alternative sampling strategies as
replacements for the roulette wheel method.
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For vertebrates, there are three major collections of TFBS motifs: public Jaspar and commercial 

Transfac and Genomatix. We compared performance of the three libraries, in terms of coverage, 

specificity, and sensitivity, using the chip-seq data for 44 transcription factors (TFs) as the 

positive sets, and third exons as the negative set. Each commercial library was used with its 

supplied scanner (Match and MatInspector), and all the three libraries were used with the same 

two open source scanners (Bio.Motif and matrix-scan). 

 The coverage (number of represented TFs) was highest for Genomatix (37), followed by 

Transfac (33), and by Jaspar (21). The average specificity and sensitivity was practically identical 

for all three libraries, when used with the same scanner. The two open-source scanners 

outperformed the two commercial scanners, by resulting in higher average sensitivity for the 

same average specificity. The use of Genomatix matrix families busted sensitivity, at the cost of a 

drop in specificity. 

 With Bio.Motif scanner, we analyzed the full ROC curves for all the motifs from the three 

libraries. We investigatied utility of different ways of parametrization of the ROC curves to 

automatically set the thresholds in a way that maximizes the balanced accuracy (average of 

specificity and the sensitivity). Our results demonstrate that the optimal value of the threshold is 

dependent on the information content of the motif. 
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Under the Nencki Genomics project (http://www.nencki-genomics.org), we developed a set of 

webservices for analysis of gene co-expression, cis-regulatory regions, and functional annotations; 

on the basis of user-supplied genomic or expression data and the large body of public regulatory 

genomic data provided by the Nencki Genomics Database [1]. The webservices use the well-

defined SOAP/WSDL interface and are divided into two sets: genomic and expression. The 

genomic webservices provide functionalities of mapping regulatory areas to genes, intersecting 

regulatory areas, and intersecting areas with known TFBS motifs (both Jaspar and Transfac), 

identified genome-wide. Notably, we provide a webservice function, which plots a graphical 

representation of selected NGD content in the flank of transcription start site of a chosen gene. The 

expression webservices can be chained to provide a typical workflow of analysis of transcriptomic 

data, from pre-processed gene expression data (probes/genes x conditions), through probesets 

mapping and data transformation, to identification of differentially expressed genes, clustering and 

visualization. At each step of the analysis, the results can be returned to the user as a TSV file, piped 

to the next step, or stored in the underlying databases (providing access right control) for future use, 

sharing the data with others, or making them public.

Taverna Workbench (http://www.taverna.org.uk/) is a rapidly developing open-source 

workflow management system, which we use for the integration of the Nencki Genomics 

webservices. Taverna's graphical user interface (GUI) makes these functionalities accessible to a 

broad biological community of users. 

[1] Krystkowiak et al. Nencki Genomics Database – Ensembl funcgen enhanced with genome-wide 
TFBS motifs, intersections and user data. Database, under revision.



DRIMust: a web server for Discovering Rank Imbalanced Motifs Using 

Suffix Trees  

Limor Leibovich
1*

, Inbal Paz
2*

, Zohar Yakhini
1,3

 and Yael Mandel-Gutfreund
2 

1
Department of Computer Science, Technion - Israel Institute of Technology, Technion 

City, Haifa 32000, Israel 
2
Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 

32000, Israel 
3
Agilent Laboratories Israel, 94 Em Hamoshavot Road, 49527 Petach-Tikva, Israel 

 

Abstract 

Cellular regulation mechanisms that involve proteins and other active molecules 

interacting with specific targets often involve the recognition of short sequence elements. 

Studies that focus on measuring and investigating sequence based recognition processes 

make use of statistical and computational tools that support the identification and 

understanding of sequence motifs. We present a new web application, named DRIMust, 

freely accessible through the website: http://drimust.technion.ac.il, for de-novo motif 

discovery services. The DRIMust algorithm is based on the minimum-hypergeometric 

(mHG) statistical framework using suffix trees for an efficient enumeration of motif 

candidates. DRIMust takes as input ranked lists of sequences in FASTA format and 

returns motifs that are over-represented at the top of the list, where the determination of 

the threshold that defines top is data driven. The resulting motifs are presented 

individually with an accurate p-value indication and as a Position Specific Scoring Matrix 

(PSSM). Comparing DRIMust to other state-of-the-art tools demonstrated significant 

advantage to DRIMust both in result accuracy and in short running times. Overall, 

DRIMust is unique in combining efficient search on large ranked lists with rigorous p-

value estimation for the detected motifs. 
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I. INTRODUCTION 

Embryo development involves differentiation of 

tissues that starts from embryonic stem cells. The 

emerging tissues send and receive signaling 

molecules and in response differentiate further, and 

the proper timing and spatial characteristics of each 

stage are important for correct development. This 

requires precise control of the expression of key 

transcription factors that in turn control gene 

expression in their respective cell types. Here we 

establish new aspects of activity of polycomb 

repression complexes, PRC, which are involved in 

this process. Activity of PRC complexes forms 

additional layer of control for genes that are 

activated/deactivated with making/removing 

epigenetic modifications at promoter regions such 

as H3K4me3 and H3K27ac. It was shown 

previously that PRC-2 complex induces tri-

methylation of lysine 27 of histone H3, epigenetic 

mark H3K27me3, and this modification recruits 

PRC-1 complex which makes further epigenetic 

changes that may prevent the conversion of RNA 

polymerase II (pol2) to a conformation that 

produces gene transcripts. This prevents gene 

expression. Alternatively, PRC histone 

modifications induce pol2 form that does produce 

gene transcripts but orders of magnitude less 

efficiently than the standard productive form. It was 

also shown previously that PRC activity is more 

frequent in early cell development where it affects 

20-25% of genes, and that most genes repressed 

by PRC are eventually expressed. 

 

II. PURPOSE AND HYPOTHESIS 

For most genes the expression level is determined 

by the cell without PRC activity by regulating the 

activation through H3K4me3, H3K27ac etc., which 

opens the question of the benefit of an extra level of 

regulation. We show that PRC allows to recruit pol2 

to genes without expressing them. When PRC 

activity is being reduced, the expression of gene 

increases as pol2 changes to productive forms. The 

speed of that increase depends on the amount of 

pre-loaded pol2. The differences in that speed for 

different genes are particularly important when two 

master transcription factors are simultaneously 

stimulated and they repress each other, and in the 

stable state only one of two factors is expressed. In 

the development of the neural tube, this situation is 

present for Nkx2-2 and Olig2, the key factors of two 

adjacent layers in the neural tube, pV3 and pMN 

(motor neurons), and possibly with other 

boundaries between the layers. 

 

III. CONCLUSIONS 

In the development of neural tube, neural tube 

cells initially represent EB type with high levels of 

Oct4.  With a certain combination of signals, EB 

cells eliminate Oct4, activate Sox2 and stimulate 

expression of Pax6. Then Shh signal from the 

notochord creates Pax6-free layers on the ventral 

side, FP, pV3, pMN, pV2 

Qualitative narrative of Balaskas et al.  At the 

beginning of the EB to NEB transition, three key 

factors (Pax6, Olig2, Nkx2.2) have low levels. Pax6 

increases first, activated by RA.  Next, in the ventral 

layers Olig2 increases in response to Shh  Gli1, 

while Nkx2-2 is repressed by Olig2 and Pax6. Olig2 

represses Pax6 which decreases. However, Olig2 

is a less effective repressor of Nkx2-2 than Pax6. 

When the net impact of Gli1 (activator from Shh 

pathway), Oli2 and Pax6 (repressor) is sufficient to 

stimulate Nkx2-2, the latter responds rapidly, thus 

eliminating Pax6 and Olig2 from pV3 (but not from 

pMN) 

This system relies on combinations of activating 

impact of Gli1 and repressors and we hypothesize 

that these signals independently regulate pol2 

recruitment and PRC activity. Redundant 

mechanisms of gene control levels enable different 

types of responses to simultaneous activation and 

repression and precise control of patterns formed in 

the tissue. We observe that Nkx2-2 has the highest 

levels of pol2/H3K36me3 (ratio), Pax6 is 

intermediate and Olig2 has the lowest. We 

conjecture that this determines the speed of 

reaction of these genes to activating signals as 

needed by dynamic control of gene expression. 

 



Alena van Bömmel
1
, Mike Love

1
, Ho-Ryun Chung

2
 and Martin Vingron

1
 

(1) Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany  

(2) Otto-Warburg Laboratory, Computational Epigenomics Group, Max Planck Institute for Molecular 

Genetics, Berlin, Germany 

Detection of co-regulating transcription factors in 34 human cell types using predicted 

DNA-binding affinity on DNase hypersensitive sites. 

BACKGROUND: Cell-type-specific gene expression is regulated by combinatorial 

interactions among transcription factors (TFs) binding to the DNA. Information about TFs’ 

binding affinity to distal and proximal regulatory sequences can help determine which 

combinations of factors work together to regulate their target genes in cell-type-specific 

manner. 

RESULTS: In this study, we provide detection of co-regulating TF pairs in 34 healthy human 

cell types which is based on statistical analysis of estimated ranked lists of TFs’ target 

regions. Specifically, we first scanned all cell-type-specific DNase hypersensitive sites 

(DHSs) for single TF-DNA binding affinities using known motifs for 160 TFs and ranked the 

DHSs by their predicted binding affinity separately for each TF. We then studied the 

similarity of pairs of the ranked lists stratified by cell type by applying a statistical test for 

multiway contingency tables. Our significant TF pairs defined by the test in each cell type 

were validated by known protein-protein interactions (PPIs) and by detected co-binding of 

TFs in ChIP-seq data. We found that the known PPIs are significantly enriched (up to 12 fold) 

in the groups of our predicted co-regulating TFs and that we can recover a majority (56%) of 

predicted co-binding TF pairs from the ChIP-seq analysis. Furthermore, the predicted co-

regulating TFs are supported in literature to be active regulators in the corresponding cell 

types.  

CONCLUSION: Our findings show that the cell-type-specific gene expression is regulated by 

a large number of combinatorial TF interactions with dominating central regulators. However, 

the TF interaction networks substantially differ even for related cell lines. 
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Title:  

Regulatory motif detection using different types of evolutionary conservation information.  

 

Abstract (250 words at most): 

Computational methods, which search de novo for conserved sites in a non-functional background, have 

been proven successful for the prediction of regulatory motifs. Conservation is typically quantified by 

overrepresentation (in the promotor regions of coregulated genes) and/or by evolutionary conservation in 

the promotor regions of orthologous genes.   

We present 3 different adaptations of our well known overrepresentation based motif detection tool 

MotifSampler in order to search in both spaces of conservation simultaneously. Each adaptation quantifies 

evolutionary conservation in a different way : from 1) robust counting (MotifSampler-cPSP, allows the use 

of a position specific prior built by counting the occurrences of sites in orthologs), over 2) a comparative 

approach (NOrthoMotifSampler, assumes motif evolution is 'slower than' background evolution in 

orthologs), to 3) explicit evolution modeling  (PhyloMotifSampler, uses a motif evolution model adapted 

from FelsensteinF81). MotifSampler-cPSP is most suitable for datasets with phylogenetically closely 

related orthologs whereas NOrthoMotifSampler is most sensitive in detecting sites that have mutated over 

time (in distantly related orthologs). PhyloMotifSampler finds motifs well in closely as well as distantly 

related orthologs yet with a lower site annotation accuracy and longer runtime. Neither of the newly 

developed tools requires prealignment of the orthologs which makes them attractive for datasets where 

such alignment is unreliable.  
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Abstract 

Pseudogenes are genomic sequences closely resembling genes but possessing sequence differences that 
prevent them from encoding functional proteins. Although the human genome contains thousands of 
pseudogenes, these sequences are generally disregarded in functional genomic studies and are widely 
viewed as non-functional. However, there is increasing evidence that some pseudogenes are actually 
transcribed into RNA and can contribute to cancer when dysregulated. In particular, pseudogene 
transcripts can sequester miRNAs that would otherwise target mRNAs.  In this role pseudogenes 
function as competing endogenous RNA (ceRNA).  

To investigate the hypothesis that transcribed pseudogenes play a role in cancer, we developed a 
bioinformatics method for studying pseudogene transcription using RNA-seq and applied this method to 
820 breast cancer samples from The Cancer Genome Atlas project. We incorporated sample-paired gene 
and miRNA expression data and miRNA target prediction to assess the potential ceRNA function of 
transcribed pseudogenes. We also performed a clustering analysis using the pseudogene expression 
data, determining how variation in pseudogene expression relates to known breast cancer subtypes. 

Our results indicate that many pseudogenes are transcribed in breast cancer. A subset of these exhibit 
significant differential expression between tumor and normal samples. The expression levels of the 
differentially expressed pseudogenes correlate with a number of known cancer-related genes. 
Furthermore, our analysis incorporating miRNA target prediction and miRNA expression data suggests 
that a number of transcribed pseudogenes are strong candidates for ceRNA function. Taken together, 
these results indicate that pseudogene transcription in cancer plays a larger role than previously 
appreciated. 
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Understanding gene regulation is a key challenge in today's biology. The new 

technologies of protein binding microarrays (PBMs) and high-throughput SELEX 

(HT-SELEX) allow measurement of the binding intensities of one transcription factor 

(TF) to an enormous number of synthetic double-stranded DNA probes in a single 

experiment. The PBM technology is based on microarrays, while HT-SELEX uses 

deep sequencing. The ChIP-seq technique uses deep sequencing to identify bound 

DNA segments in vivo. A key computational challenge is inferring the binding site 

motif of the tested TF from the experimental data. 

Recently, a new study (Jolma et al. Cell 2013) reported the results of hundreds of HT-

SELEX experiments on human TFs, including many TFs covered by PBM 

technology. We assessed the similarities and differences between PBM and HT-

SELEX technologies, and measured the performance of binding models produced by 

each technology in predicting in vivo binding. Using published HT-SELEX-derived 

models to predict PBM bound probes results in worse performance than PBM-derived 

models (average AUC 0.78 compared to 0.89). Average correlation between the top 

k-mers ranked by the two technologies is just over 0.5. HT-SELEX-derived models 

are slightly better in predicting in vivo binding (average AUC 0.72 compared to 0.7 

on ChIP-seq data). 

Our analysis currently focuses on measuring and correcting for biases. We observed 

GC-bias in the sequencing files, as well as systematic enrichment of specific k-mers. 

We will report progress towards the development of a robust computational pipeline 

to generate an accurate binding model from HT-SELEX data. 
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Background: Repetitive Extragenic Palindromic elements (REPs) are short palindromic sequences, 

commonly found in enteric bacteria. REPs (i) are almost exclusively found in the intergenic space, 

often arranged in repeats (BIMEs); (ii) occur in high abundance and; (iii) are highly conserved within a 

genome. Various biological roles have been proposed, however none of them provides a common 

functional denominator. We therefore decided to investigate the commonality using a comparative 

genomics approach. 

Results:  E.coli REPs were identified using the related 29bp conserved sequence. We observed a 

biased distribution of REPs with respect to the ORFs: REPs are not found between divergent gene-

pairs and predominantly located between convergent gene-pairs. A set of 465 publicly available 

microarrays (M3D) was used to explore the effects of REPs on transcription under various conditions. 

This analysis revealed an association between REP-related gene-pairs and higher expression levels. 

This association is also evident when Codon Adaptation Index values were compared. We identified 

microarrays with significant effects on gene-REP-gene pair (co-) expression. These arrays all 

represented the transcriptional response to certain kinds of stress such as biofilm formation and 

aerobiosis.  

Conclusions:  This study shows that REPs potentially have a global role in regulation of differential 

expression. Our results imply that REPs enable differential expression specifically in cases were 

transcription-driven DNA supercoiling can arise, i.e. expression of convergent gene-pairs and 

transcription regulated by an alternative promoter. Our findings suggest that the phenomenon of 

REP-enabled differential expression is linked to the bacterial stress response in E. coli. 
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MicroRNAs are short (21-25 nt) non-coding RNAs that repress the expression of their direct targets 
(Bartel, 2009). Building an accurate binding model for a microRNA is essential to differentiate its true 
binding targets from spurious ones (Khorshid 2013). So far, conventional approaches to prediction of 
microRNA binding sites have all relied on local sequence information only, in a way or another. In 
this work we devise a novel machine learning system, MiRnaBoost, to build a microRNA binding 
classifier by combining sequence, expression and position information-based classifiers. Currently, 
sequence-based prediction methods are not fully capturing microRNA target preferences, nor context 
specific regulations. To overcome the limitation of sequence-only miRNA-gene interaction prediction, 
MiRnaBoost complements a sequence based classifier (miRanda) with two additional supervised 
models trained on different views i) the expression levels of both the miRNA and the target gene 
(Huang 2007), ii) the pattern of the genomic position (Elati 2013) of the targets of a miRNA. 
MiRnaBoost combines these weak classifiers using a modified version of the Adaboost algorithm, 
which manages to combine and improve together classifiers trained on the same instances but on 
different views (Zhijie 2010; Elati 2013). 
Based on cross-validation analysis over the microRNAs with the most validated targets in TarBase, 
MiRnaBoost consistently outperforms conventional methods exploiting only sequence information. 
The main advantage of MiRnaBoost is that it lowers the false positive rate. Furthermore, MiRnaBoost 
predicted miRNA target sets are more consistently annotated with GO terms than similar sized random 
subsets of genes with conserved miRNA seed regions. 
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In the last decades, a wealth of data has become available and is ready to be analyzed thanks to careful database 
design. However, the sheer volume makes it impossible to analyze all this information manually and masks 
potentially interesting patterns. This problem can partially be overcome by using the advances in machine 
learning and knowledge discovery as supportive tools for life scientists. Innovative frequent itemset search 
algorithms are capable of uncovering hidden patterns and can be fine-tuned to focus on capturing biological 
relevance instead of only the database characteristics. However, this requires that several weaknesses of FIM 
algorithms will be addressed, such as the dense data problem and the lack of biologically relevant quality 
measures that can be used to fine-tune the algorithms. Fortunately, many different types of biological 
information have become available and can be combined to redefine the interestingness criterium to the life 
sciences environment.  
 
In this poster, we present a frequent itemset mining (FIM) framework, powered by information from public and 
in-house repositories as an assistant platform for integratomics analyses. As such, we build on existing 
techniques used in pathway and functional enrichment and combine these with biologically relevant 
modifications of current state-of-the-art data mining techniques. We hereby tackle several of the traditional 
shortcomings of FIM algorithms, while validating and applying our multi-level approach to currently ongoing 
cancer research to identify regulatory systems. 
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The identification of DNase I hypersensitive sites and DNase footprints are well 
established methods for identification of genomic regulatory regions and DNA-
protein interactions, respectively. Using data generated by high throughput DNase-
seq assays, we propose models to identify binding locations of transcription factors 
in different cell lines in a genome-wide manner by modeling each factor’s unique 
DNase footprint. Contrary to most existing approaches, our model aims to represent 
the footprint shape in detail while trying to account for the contribution of overall 
DNase hypersensitivity around a binding site to assess the accuracy of the footprints 
by themselves – a necessary feature to identify specific sites bound under different 
conditions. We model each transcription factor’s footprint using two features: 
distribution of DNase-seq reads at each base and the DNase-seq coverage. 
Transcription factor binding predictions are validated rigorously using ChIP-seq 
assays from the ENCODE consortium. We achieve a mean AUC value of 95% for 20 
transcription factors. We find that AUC values tend to depend on quality of motif 
associated with transcription factor and transcription factor structural family. For 
each transcription factor, we show that some ChIP-seq peaks do not overlap with a 
DNase footprint and characterize such peaks according to ChIP-seq signal intensity 
and co-binding proteins. 
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