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MOTIVATION
Functional genomics aims to understand dynamic fea-
tures encoded in the genome such as transcription of
genes, thereby frequently using results from high through-
put approaches. Transcription, RNA splicing and trans-
lation are the key steps in the process of gene expres-
sion. Production of a specific gene product can be
increased or decreased by regulation of any of these
steps. DNA microarrays are used to measure expres-
sion levels of a large number of genes simultaneously
over a set of experimental conditions. In recent years,
expression levels of thousands of genes are not only
measured over sets of experimental conditions but also
across many time points. To analyze such high through-
put 3D datasets we need computational approaches.
Coexpression analysis helps to retrieve functionally co-
herent group of genes that are often coregulated by a
common transcription factor. Clustering, one of the un-
supervised learning approaches can retrieve a group of
genes having similar expression profiles over all experi-
mental conditions. But it has been observed that genes
are not necessarily to be coexpressed over all samples
in a gene expression dataset, i.e.- genes can have sim-
ilar expression profiles over a subset of samples. To
simultaneously group genes and samples, biclustering
or subspace clustering methods are used. However, bi-
clustering algorithms fail to cluster genes, samples and
time points simultaneously in a time series gene expres-
sion data. To cope with that problem triclustering al-
gorithms are used. Zhao et al. proposed a triclustering
algorithm TRICLUSTER to find groups of coexpressed
genes in such time-series gene expression data set [1].
Tchagang et. al. recently proposed OPTricluster al-
gorithm that is also able to cluster genes, samples and
time points simultaneously [2]. One of the limitations
of OPTricluster is that it can only cope with short time
series gene expression datasets. In our previous work
we have proposed triclustering algorithm δ-TRIMAX
to mine such 3D gene expression datasets by introduc-
ing a novel definition of mean squared residue score

for mining 3D datasets [3]. The goal of δ-TRIMAX
is to retrieve maximal triclusters having mean squared
residue score below a threshold δ. The limitations of
δ-TRIMAX is that it is unable to extract overlapping
triclusters. As δ-TRIMAX replaces each element of tri-
cluster found in one iteration by random numbers, it
can affect the originality of the dataset. In this pa-
per we introduce the triclustering algorithm EMOA-δ-
TRIMAX that can retrieve a group of genes that are
coexpressed and coregulated over a subset of samples
across a subset of time points. Here we have used Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) to
balance the trade-off between the aforementioned con-
flicting objectives i.e. minimizing mean squared residue
score, maximizing volume of the triclusters and generate
pareto optimal solutions that are equally distributed in
the objective space [4]. Additionally we have also max-
imized Spearman correlation coefficient of resultant tri-
clusters. Our proposed algorithm also effectively deals
with the drawbacks of our previously proposed algo-
rithm δ-TRIMAX.
Regulation of transcription by transcription factors (TFs)
can be initiated through binding to defined cis-regulatory
elements in promoters. For accomplishing the function
as an activator or inhibitor, TFs must recognize the re-
gions where they should bind to and they do so through
DNA-binding domains (DBD) [5]. A systematic classi-
fication of TFs according to their DBDs can help to
predict the DNA-binding specificity of TFs with as yet
ill-characterized DNA-binding properties. Paralogous
transcription factors may have derived from a common
ancestor by a gene duplication event and these tran-
scription factors are assumed to participate in a novel
function or some specialized ones of their original func-
tions. Many of them still share major properties of
their DBD and, thus, bind to identical or highly re-
lated cis-regulatory elements [5]. Mutation of the acti-
vation domain of paralogous transcription factors may
yield alteration of their interacting partners in spite of
having similar DNA-binding domains. Divergence of



Figure 1: Differentially expressed targets of paralo-
gous transcription factor across different subset of time
points

expression profiles of paralogous transcription factors
across tissues or time points can be a cause for par-
ticipating in distinct pathways or regulating the same
genes across different tissues or time points. For in-
stance it has been previously reported that two paralo-
gous transcription factors Pax2 and Pax3 regulate the
gene c-Ret in kidney and neural crest, respectively [6].
Though recent works reveal roles of cardiac transcrip-
tion factors in molecular regulation of pluripotent stem
cell derived cardiomyocytes differentiation, the roles of
cardiac paralogous T-Box family transcription factors
are still poorly understood during different stages of
cardiac differentiation.

RESULT
In this work we have applied our proposed EMOA-δ-
TRIMAX algorithm on a time series gene expression
dataset that contains mRNA expression profiles dur-
ing differentiation of human induced pluripotent stem
cell (hiPSC) derived cardiomyocytes. This dataset con-
tains 48803 Illumina probe ids, 12 time points (day 0,
3, 7, 10, 14, 20, 28, 35, 45, 60, 90, 120) and 3 samples
(GEO accession number GSE35671). Expression values
at each time point were generated by three independent
runs (Run 1-3) [7]. Our algorithm results in 100 triclus-
ters that cover 88.14% of all probe-ids, 100% of all time
points and 100% of all samples. We could show that
EMOA-δ-TRIMAX outperforms other triclustering al-
gorithms. It has been reported in the original work that
the differentiation of hiPSCs to cardiomyocytes was ob-
served during days 0, 3, 7, 10, 14, 20, 28 and on day 14
heart beating was first perceived. Days 35, 45, 60, 90
and 120 are reported as post-differentiation time points
[7]. To establish biological significance of group of co-

Figure 2: Differentially expressed targets of paralo-
gous transcription factor across different subset of time
points

expressed genes, we checked for KEGG pathway and
transcription factor binding site (TFBS) enrichment,
the latter by using the TRANSFAC library (version
2012.2) [8]. We used an internal database of around 52
million TFBS predictions that have high affinity scores
and are conserved between human, mouse, dog and
cow [9]. Out of these 52 million conserved TFBSs we
have selected the best 1% for each TRANSFAC matrix
individually to select the most specific regulator (tran-
scription factor) - target interactions. We have observed
KEGG pathway and TFBS enrichment for 100% and
98% of resultant triclusters, respectively. Through our
analysis we identified similar expression profiles of par-
alogous TFs TBX3 and TBX5 across days 0, 14 but
divergence in their expression profiles across days 14,
20, 45 over all samples. Figure 1 shows that at early
time points both TBX3, TBX5 and at later time points
only TBX5 regulate target genes that participate in dis-
tinct sets of pathways. Additionally we observed that
both TBX3, TBX5 and only TBX5 regulate MAPK
signaling pathways through binding promoter regions of
different target genes at early and later time points, re-
spectively. We also observed similar expression profiles
of paralogous transcription factors TBX4 and TBX5
across days 3, 7 but divergence in their expression pro-
files across days 14, 20, 45 over all samples. In Figure
2 we can observe that at early time points both TBX4,
TBX5 and at later time point only TBX5 regulate dis-
tinct sets of genes that participate almost different sig-
naling pathways. It has been reported in previous stud-
ies that ErbB, calcium, neurotrophin, VEGF, hedgehog
signaling pathways play critical roles in cardiac differ-
entiation and development [10–14]. It has been revealed
in a previous study that TBX5 plays a crucial role in



embryonic cardiac cell cycle progression and depletion
of TBX5 leads to cardiac programmed cell death [15].
Interestingly through our analysis we also observed that
TBX5 is expressed in both early and later time points.

CONCLUSION
Our integrated systems biology approach reveals exclu-
sive usage of paralogous transcription factors of the T-
BOX family through identifying diversity of their ex-
pression profiles and provides new insights into their
roles in regulating cardiac differentiation.
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