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TFBS motifs are short DNA sequence patterns that have important roles in gene transcription and reg-
ulation. Discovery of these sequences remains an important task in the wider challenge of understanding
the mechanisms of gene expression; consequently, there is much continuing interest in developing algo-
rithms to computationally discover TFBS motifs.

The EM algorithm [4] is the basis of a number of algorithms for motif discovery (most notably the
popular MEME algorithm [1]). However, it suffers from several well-known limitations: it is strongly
dependent on its initial position and can converge to a saddle point of the likelihood function rather than
a local maximum. A stochastic version of the EM algorithm has been shown to alleviate these limitations
in theory [3] and has been implemented in a motif discovery context by Bi (using the OOPS, or One
Occurrence Per Sequence model) as the SEAM algorithm [2]. In this study we compare a Metropolis
independence sampler with the roulette wheel selection used in SEAM in order to evaluate the potential
performance benefits and computational cost: the motivation for this study is to determine if it is possible
to reduce the running time of the algorithm by designing a strategy where samples could be drawn from
an input sequence without having to evaluate the probability of each possible motif start site being an
occurrence of the motif. The correctness of the recovered motifs is assessed using the standard measures
of site-level sensitivity (sSn) and positive predictive value (sPPV ).

Background

The idea underlying SEAM is to replace the computation and maximisation of the expected complete-
data log likelihood function by the much simpler estimation of the posterior distribution for each input
sequence, simulating a ‘pseudo-sample’ from this distribution and updating the model parameters based
on the pseudo-complete samples [2]. This method is equivalent to the weighted ‘roulette wheel selection’
(sometimes known as ‘fitness proportionate selection’) method in genetic algorithms. Having sampled
each input sequence, a proposal model is constructed from the samples and the current model updated
to the proposal model if the Metropolis ratio is satisfied [2].

Using this method, the probability that a given position j in input sequence i is a motif occurrence
(Zi,j) must be enumerated for every position in i at every EM iteration in order to calculate the density.
This requires considerable computation and may be inefficient, especially at later EM iterations when the
majority of Zi,j values are expected to be near zero. This motivates the current study: is it possible to
sample from an input sequence without having to evaluate Zi,j at every position? One potential solution
is to use Markov Chain Monte Carlo (MCMC) to sample from our input sequence.

Method and Results

The simplest MCMC strategy (Metropolis algorithm) uses an independence sampler as the proposal dis-
tribution; this simplifies the calculation of the acceptance probability. Clearly, this method is only an
improvement on the roulette wheel selection method if the cost of drawing k samples is substantially
smaller than the cost of evaluating Zi,j at every possible motif start site. It is well known that the
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Metropolis algorithm with independence sampler can be shown to converge to a target distribution when
this distribution is well-behaved. While analysis of the posterior distribution for a given input sequence
shows that this distribution is not well-behaved at all, we have shown that this general result holds true
in the context of motif discovery for large k.

A modified version of SEAM was implemented, replacing the roulette wheel selection method with the
Metropolis independence sampler for each input sequence. The Metropolis independence sampler was im-
plemented within SEAM, replacing the roulette wheel selection method for each input sequence. Overall
performance was assessed by running the modified SEAM algorithm with 1,000 random seeds, choosing
the best result based on the motif energy function provided by Bi and calculating the site-level sensitivity
(sSn) and site-level positive predictive value (sPPV ) for the corresponding motif model. Bi’s motif
energy function is related to the sequence binding or structural configuration free energy, widely used in
motif discovery algorithms [2].

Both the original roulette wheel and modified SEAM algorithms were tested on a small collection
of datasets containing previously characterised E. coli TFBS motifs extracted from the RegulonDB
database. Initial tests with k = 1, 000 (around five times the number of possible motif start sites)
returned similar results to the roulette wheel selection method, showing the Metropolis independence
sampler converging to the target distribution. In some cases, the maximum value of the motif energy
function was increased when using the independence sampler (i.e. the output motif model was stronger),
giving a corresponding improvement in sSn and sPPV . While this improvement is encouraging, the main
disadvantage of this result is that drawing 1,000 samples from each input sequence takes substantially
longer than simply enumerating every position and drawing a sample from the roulette wheel. It is clear
that the next step is to investigate whether this trend continues when k is decreased.

In tests on a single input sequence, the Metropolis independence sampler with smaller k shows relatively
poor convergence. However, it may still give reasonable results when applied to the SEAM algorithm, as
SEAM takes a sample from each input sequence and takes the consensus of all samples in order to form
a new proposal model. It follows that even if the chosen sample for a single input sequence is relatively
poor, this may be alleviated by the chosen samples from other input sequences. It is possible that the
independence sampler still allows the stochastic EM algorithm at the heart of SEAM to converge, albeit
at a slower rate than before.

Further tests were carried out with k = 200 (i.e. around the number of possible motif start sites)
and k = 20 (i.e. around 0.1 of the number of possible motif start sites). In addition, the number of EM
iterations was varied in order to determine whether increasing this would improve situations with fewer
MC samples. The results of these tests show that, overall, as k is reduced, the maximum value of the
motif energy function decreases (i.e. the output motif model becomes weaker), often reducing sSn and
sPPV as the number of true positive site predictions decreases.

Table 1 illustrates some of the results of the comparison of sampling strategies. In the case of the
Ada motif, the Metropolis independence sampler improves the sSn and sPPV of a motif which was not
discovered well by the roulette wheel sampling method. This test also illustrates a slight increase in motif
energy; this increase is also noted in other datasets. In the case of the MetR motif, while the sSn and
sPPV results for the Metropolis method with large k match those for the roulette wheel sampling method,
this performance decreases as k is decreased. In both cases, as k decreases, the maximum motif energy
also decreases. Our results also show that for k greater than the number of possible motif start sites,
increasing the number of EM iterations may slightly increase the motif energy of the result. However,
for small k, the overall result is poor and increasing the number of EM iterations makes little difference
to the maximum motif energy (there is very little improvement over randomly choosing motif positions
within the dataset). While increasing the number of EM iterations may lead to a small improvement in
the mean motif energy over 1,000 random seeds, this improvement is not enough to offset the effect of
reducing k.

Conclusions

Although the Metropolis algorithm with independence sampler is a relatively simple sampling strategy,
this approach is shown to give surprisingly good recovery of motifs based on site-level sensitivity and
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Motif Ada MetR
Method Roulette Metropolis Roulette Metropolis

MC samples - 1000 200 20 - 1000 200 20
EM iterations - 500 1500 2000 - 500 1500 2000

sSn 0.00 0.25 0.25 0.25 0.71 0.71 0.14 0.00
sPPV 0.00 0.25 0.25 0.25 0.71 0.71 0.14 0.00

Motif energy -24.03 -23.17 -30.02 -45.80 -43.94 -47.52 -72.23 -84.72

Table 1: Results of sampling strategy comparison for two E. coli TFBS motifs.

positive predictive value. Implementing this approach and using large numbers of Monte Carlo samples
is also shown to often return stronger motif models, based on Bi’s motif energy function. We note the
high computational cost of drawing large numbers of samples using the independence sampler, how-
ever its performance in this study indicates the potential in exploring alternative sampling strategies as
replacements for the roulette wheel method.
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