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Molecular recognition of genomic target sites by regulator proteins is a vital process in the 

transcription regulation of genes in living cells. The types of physical interactions that contri-

bute to the recognition of binding sites by a protein can roughly be divided into those enabling 

direct read-out and those that allow for indirect read-out [1]. The former comprises base-

specific recognition, such as stabilizing hydrogen bonds between regulator amino acids and a 

set of conserved bases in the genomic DNA sequence, while in the case of the latter variations 

within the DNA structure will be used as the basis for recognition. It is the direct form of rec-

ognition that is the focus of most current endeavors to model regulator binding sites, usually 

by modeling a conserved set of nucleotides, e.g. a position weight matrix (PWM). However 

by considering only a single recognition mechanism, these models overlook any information 

concerning binding site identity that can be derived from the use of indirect read-out by the 

regulator. It was therefore our goal to create a binding site model based on this second type of 

recognition which involves interactions between the regulator protein and the molecular struc-

ture of the DNA molecule.  

Methodology 

We have developed a model which scores sites for the likelihood that they are bound by a cer-

tain transcription factor based on specific characteristics in the DNA sequence or structure. 

These characteristics must first be learned by the model during a training step from known 

binding sites of the transcription factor. 

The structural DNA properties of the binding sites, needed to construct the model, are derived 

from their nucleotide sequence using a number of higher-order value look-up functions, so-

called structural scales, which are based on experimental data (e.g. X-ray crystallography of 

various DNA molecules). Thirteen profiles representing different structural DNA properties, 

such as DNA rigidity or stability, were used together with the DNA sequence as input data to 

train a model representing the common structural features shared by all known binding sites 

of a specified regulator.  This was done using conditional random fields (CRF), a discrimina-

tive machine learning method designed to label sequential data [2]. Two novel extension algo-

rithms were included in the training of the models, namely an optimization method which al-

lows the CRF to work with structural DNA properties, and a correction method which can 

compensate for any bias in the training set towards nucleotide conservation. Once trained, the 

models could be used to evaluate the likelihood of regulator binding for any given DNA se-

quence.  We have named this general modeling framework CRoSSeD (Conditional Random 

fields of Smoothed Structural Data) [3] and an overview can be found in figure 1. 
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Figure 1: Overview of the CRoSSeD methodology. The sequence of known TF binding sites (green) are col-

lected and used to create different structural profiles by applying structural scales. These structural scales are 

then used as input for the CRoSSeD model which will create a binding site model featuring strongly conserved 

structural profile characteristics in specific regions at the binding sites. These binding site models can then be 

used to predict other binding sites (red) for the given TF in the genome. 

 

Cross-validation analysis 

The classification performance of the CRoSSeD methodology was demonstrated and com-

pared to several existing binding site models on a number of synthetic and biological data sets 

through cross-validation analysis. The synthetic data set was constructed so that the samples 

fit a predefined structural profile as shown in figure 2a. The ROC curve generated after the 

cross-validation on the synthetic data set is illustrated in figure 2b. The biological data sets 

consist of the known binding sites for 27 different Escherichia coli transcription factors. For 

the majority of the biological data sets the CRoSSeD models had a performance that was 

equal to or greater than that of all the other tested models. From the results of these cross-

validations, we were able to summarize that the CRoSSeD methodology had an overall better 

predictive power than a standard PWM model and a previously proposed structural property 

model [4] for both the synthetic and the biological data sets. The improved classification per-

formance of the CRoSSeD model could not be replicated used a higher-order sequence-only 

CRF method (named CRFseq), thus demonstrating that the structural profiles contain addi-

tional information about regulator binding which cannot be derived from any comparable se-

quence representation.  
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Figure 2: (a) Flexibility profiles of all 40 positive synthetic samples (blue lines) as measured by the B-DNA twist 

scale, (lower values correspond to more flexible regions). The red line is the average profile. For comparison, the 

sequence conservation logo is also given for each position. At the bottom of the figure is the structural characte-

ristic that was simulated (HR: high rigidity, LR: low rigidity). (b) ROC curve displaying the average result of 

five ten-fold cross validations for the CRoSSeD (blue line), BioBayesNet (green line), PWM (red line) and 

CRFseq (cyan line) model when applied to the synthetic data set. 

Novel binding site predictions 

To demonstrate its potential as a tool for novel binding site discovery, the CRoSSeD models 

were used to screen the entire E. coli  genome for binding sites of the 27 transcription factors. 

For a comparison the same procedure was followed using a traditional PWM model as bind-

ing site representation. Genes where the promoters contained predicted binding sites, were 

considered as novel targets of the modeled transcription factors and were further validated 

using gene expression data and an extensive literature and database survey. The predictions 

made by the CRoSSeD methodology for fourteen of the transcription factors showed signifi-

cant overlap with the results from a gene expression analysis, while the PWM predictions on-

ly displayed overlap in nine cases. Except for a single case, all validated PWM predictions 

were also made by the CRoSSeD models. This indicates that most novel predictions made us-

ing a PWM based method can also be made with a structure-based model, while the reverse is 

not always true. To verify whether the targets predicted only by the structure-based method 

might indeed correspond to true targets, we carefully checked the literature for additional va-

lidation. Experimental evidence was found to back up several of the CRoSSeD predictions for 

a number of different transcription factors. For some validated binding sites the applied mod-

els indicated that the structural homology is much more pronounced than the sequence ho-

mology. This might suggest that poor sequence conservation in a binding site could be com-

pensated by a strong structural profile. 

Biological relevance 

To further demonstrate that the CRoSSeD methodology was able to uncover specific structur-

al properties that most likely play a biological role in the recognition of the binding sites by 

the regulator protein, the constructed models were compared with the current knowledge of 

protein-DNA interactions for two well studied TFs, namely CRP and PurR. The highest-

weighted structural profile derived from the CRP model clearly shows the 'primary kink', a 

bend towards the major groove, and 'secondary kink', a bend towards the minor groove, that 

the CRP protein commonly induces in the DNA molecule [5]. This profile is given figure 3. 

The modeled structural characteristics for the PurR regulator confirm the necessity of a very 

stable binding site in close proximity to the leucine intercalation [6]. 
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Figure 3: Structural profile corresponding to the DNase-I cutting frequency (flexibility toward major groove) 

values based on the weights assigned to the CRP model. Plotted in the dark blue line is the weighted average of 

the property at each position in the motif and surrounding it in the light blue area is the standard deviation on this 

average for each position. Locations of the primary and secondary kink in CRP-DNA complex are marked. 

Conclusions 

Our work has shown that the inclusion of DNA structural properties into a binding site model-

ing framework not only improves classification performance but also identifies additional bio-

logical relevant properties that are missed by sequence-only methodologies. While we dem-

onstrated its performance for prokaryotic organisms, the method is generic and can also be 

applied on eukaryotic transcription factor binding sites or other functional genomic elements. 
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