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Introduction 

Nowadays with high-throughput chromatin-immunoprecipitation technologies becoming increasingly 
popular for the genome-wide identification of TF binding sites, cis-regulatory module detection (CRM) 
can be used in combination with ChIP information to computationally predict with which other TFs a 
ChIP-assayed TF potentially interacts. In contrast to gene centered methods, ChIP information allows 
reducing largely the regions in which the motif of the assayed TF should be located (typically 500 bp 
instead of thousands of bp). However, as the binding site of the assayed TF often not coincides with the 
peak location, searching for CRMs in ChIP-Seq defined regions still boils down to a combinatorial search 
problem. In addition, as it is not known in advance with which other TF the assayed one interacts, the 
CRM detection approach needs to be able to search for a CRM that can include any of the known motifs.  

Methodology 

In this study we developed an analysis flow (Figure 1) that allows performing CRM detection on ChIP-
defined regions by combining a powerful combinatorial search algorithm with a strategy to reduce the 
search space in a biologically motivated way. The latter is done by constraining the number of possible 
motif sites during the screening step using epigenetic filtering and the number of valid motif 
combinations during the combinatorial search. The combinatorial search is performed by CPModule, a 
novel approach of CRM detection with a performance that is competitive to that of other state-of-art tools 
but that in contrast to previous tools can handle much larger datasets (such as 100 sequences in 
combination with a library of 516 PWMs). The advantage of CPModule is that it builds upon a constraint 
based itemset mining framework CP4IM: this offers the advantage of flexibly adding relevant constraints 
and a straight forward application of existing itemset mining principles. This allowed us to use CPModule 
in a query-based setting, searching for modules only that contained our motif of interest, i.e. the motif of 
the assayed TF and that meet other biologically relevant constraints that help us to prioritize the most 
likely biologically true modules, such as encompassing a restricted region (proximity constraint) or 
occurring in a high number of sequences (frequency constraint (support)). Benchmarking with other state-
of-the-art CRM tools shows that CPModule is competitive with other CRM tools in effectively searching 
CRMs in large sequence sets, even in the presence of a considerable amount of noisy motif sites. 
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Figure 1: Analysis flow. The input consists of a library of PWMs and a set of sequences. In a first step 
prior to the actual CRM detection a screening with public motif databases is performed. Here we combine 
standard PWM screening with filtering based on epigenetic features. Only regions containing a motif site 
that display a low GC content and a low nucleosome occupancy are withheld. The second step consists of 
the actual combinatorial search. Here we use a constrained based itemset mining approach to enumerate 
all valid CRMs i.e. combinations of motifs that 1) of which the motif sites contributing to the CRM occur 
in each others proximity (user defined) 2) that occur frequent in the input set (i.e. in all sequences 
displayed in red) 3) that are non-redundant. Valid CRMs are finally ranked based on their specificity for 
the input set. 

Results 

We demonstrate the performance of our analysis method on real ChIP-based experiments conducted by 
Chen et al. 2008 for five key transcription factors KLF4, NANOG, OCT4, SOX2 and STAT3 involved in 
self-renewal of mouse embryonic stem cells. We used the previously described combinatorial interactions 
amongst those TFs as a benchmark. Table 1 displays which of the previously described CRMs involved in 
self renewal could be recovered by CPModule and also displays their rank amongst the total number of all 
possible CRMs or of all that contain the ChIP-assayed TF. To further validate the detected CRMs we use 
the ChIP-Seq of Chen et al. 2008 in a cross validation set up: we verified whether the motifs contributing 



to the predicted CRMs fell within the binding peaks of the other ChIP-Seq-assayed TFs: the reported 
modules were validated in at least 10% of the cases by the ChIP-Seq data of the cognate validation sets. 
For instance when considering the CRM composed of SOX2 and OCT4: here we could predict by 
performing CRM detection on the ChIP-Seq regions identified for SOX2 that it most likely interacts with 
OCT4. This retrieved module was ranked first amongst the 22 potential CRMs that contained OCT4. 
OCT4 and SOX2 co-occurred in 63% of the SOX2 ChIP-Seq identified regions within a distance of 150 
bp and the identified sites for OCT4 fell within the identified OCT4 ChIP-Seq regions in 79% of the cases. 
Table 1 also clearly shows the added value of using ChIP-Seq data to constrain the search by querying 
only those CRMs that contain the motif of the assayed TF. This is illustrated by the rank of the ‘true 
module’ amongst the possible number of CRMs (so not only those containing the sites of the ChIP-Seq-
assayed TF). By enumerating all possible CRMs and ranking them based on their statistical significance, 
CPModule allows having an insight in the position of a certain CRM amongst all possible CRMs. For this 
dataset it seems that of the benchmark CRMs mainly those containing STAT3 sites rank poorly. This is 
probably due to the low specificity of the screening results obtained with the STAT family of TFs: after 
screening and epigenetic filtering we still obtain on average 11 sites per sequence, indicating that STAT3 
sites are frequently occurring sites in the genome. Such high genomic frequency deteriorates the 
specificity of CRMs containing STAT3 sites for the set of input sequences and decreases their rank. 
Without ChIP-Seq data these CRMs would never be considered. 

Comparing the outcome obtained on the same dataset with different screening strategies also showed that 
the quality of the screening input largely affects the outcome of the combinatorial search. A too dense 
screening obtained by a non-stringent screening threshold results in too many motif combinations that 
make the problem intractable or in case an output is obtained decreases the prediction power (too many 
false positive valid combinations are possible). Just increasing the stringency of the screening seems not 
to be an option as then many true sites and thus also true CRMs seem to be missing. With the availability 
of ChIP-Seq and ChIP-chip data for eukaryotic TFs, it indeed becomes increasingly clear that only in few 
cases the physically bound sites correspond to the ‘best conserved or highest scoring’ sites obtained with 
a PWM screening. This is probably partially due to the fact that PWMs stored in public database are 
biased towards sites discovered by their resemblance to the already stored motif model (circular reasoning) 
but also because other physical factors such as chromatin positioning determine the accessibility of a site. 
Using a lower screening threshold in combination with a filtering procedure based on epigenetic features 
seemed to provide a good trade off between recovering true sites while still keeping the number of false 
positives within a reasonable range. 

Conclusion 

Our results illustrate that using ChIP-Seq information together with combinatorial CRM detection is able 
to prioritize true combinatorial interactions between the assayed TF and any other TF. The success of our 
approach stems from combining ChIP-Seq information to not only determine a set of coregulated genes, 
but to also delineate the region in which at least the assayed TF binds with a powerful combinatorial 
approach that allows detecting combinations of the binding site of the assayed TF with any other known 
TF for which a PWM have been reported. 

Table 1: CRMs obtained with CPModule in combination with epigenetic filtering (non-stringent 
screening with filtering for all TFs except the assayed one). The set of sequences corresponding to the 



100 top scoring peak region of the assayed TF were screened with a set of 516 non-redundant 
TRANSFAC motifs using a non-stringent screening threshold. Epigenetic filtering was applied on all 
motif sites except on the ones of the assayed TF.  

ChIP-Seq-assayed 
TF 

CRM Rank Support Cross 
validation

Proximi
ty 

constrai
nt (bp) 

Total number of 
solutions/Numb

er of solutions 
containing the 

ChIP-Seq-
assayed TF 

Percentile of 
rank 

KLF4 KLF4, STAT4 143/2 60% 40.00% 300 147/3 97.28%/66.67%
NANOG NANOG, OCT1 6846/4 61% 70.49% 300 6868/17 99.68%/23.53%
 NANOG, STAT3 14017/10 60% 25.00% 350 14033/26 99.89%/38.46%
OCT4 OCT4, STAT1, [XFD2, 

STAT4, STAT6] 
5/5 63% 11.10% 150 5068/613 0.99%/0.82%

SOX2 SOX2, OCT4 430/1 63% 79.40% 150 14180/22 3.03%/4.55%
 SOX2, STAT3, [CDXA, 

PAX2, STAT5A] 
61807/24 60% 23.33% 250 117006/189 52.82%/12.70%

STAT3 STAT3, OCT4, [STAT1, 
STAT5A, STAT6] 

1/1 61% 24.59% 150 1366/20 0.07%/5.00%

ChIP-Seq-assayed TF: TF from which the top 100 binding peaks were used to perform the analysis. 
CRM: obtained CRMs that correspond to previously well described modules for the assayed TF; 
[between brackets are indicated other TFs that were predicted to belong to the same CRM, but that have 
not previously been described to interact with the assayed TF]. Rank: rank this CRM received (ranks 
were assigned by taking into account all the found CRMs/CRMs that contained the assayed TF). Support: 
the percentage of sequences from the input set in which this CRM occurs (should be higher than the 
frequency constraint). Cross validation: we started from the ChIP-Seq data of one TF and tried to predict 
using CRM detection with which other TFs the assayed TF interacts. We verified whether the motif sites 
contributing to the predicted CRMs fell within the binding peaks of the other ChIP-Seq-assayed TFs. 
Proximity constraint (bp): the proximity constraint at which the displayed CRM was found. Total 
number of solutions/Number of solutions containing the ChIP-Seq-assayed TF: the total number of 
valid CRMs/the number of solutions containing the motif for the ChIP-Seq-assayed TF. Percentile of 
rank: the percentile of the rank comparing with the total number of solutions/total number of solutions 
containing the motifs for the ChIP-Seq-assayed TFs. 

 


